Improving Supervised Classification Using Information Extraction

被引:1
|
作者
Du, Mian [1 ]
Pierce, Matthew [1 ]
Pivovarova, Lidia [1 ]
Yangarber, Roman [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, SF-00510 Helsinki, Finland
关键词
EVENT EXTRACTION; TEXT;
D O I
10.1007/978-3-319-19581-0_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore supervised learning for multi-class, multi-label text classification, focusing on real-world settings, where the distribution of labels changes dynamically over time. We use the PULS Information Extraction system to collect information about the distribution of class labels over named entities found in text. We then combine a knowledge-based rote classifier with statistical classifiers to obtain better performance than either classification method alone. The resulting classifier yields a significant improvement in macro-averaged F-measure compared to the state of the art, while maintaining comparable microaverage.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [11] Improving Supervised Classification of Activities of Daily Living Using Prior Knowledge
    Fleury, Anthony
    Noury, Norbert
    Vacher, Michel
    INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS, 2011, 2 (01) : 17 - 34
  • [12] Feature extraction and classification using power demand information
    Imanishi, Tomoya
    Tennekoon, Rajitha
    Nishi, Hiroaki
    2016 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2016,
  • [13] Supervised nonparametric information theoretic classification
    Archambeau, C
    Butz, T
    Popovici, V
    Verleysen, M
    Thiran, JP
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 414 - 417
  • [14] SUPERVISED CLASSIFICATION OF POLARIMETRIC SAR IMAGERY USING TEMPORAL AND CONTEXTUAL INFORMATION
    Dargahi, A.
    Maghsoudi, Y.
    Abkar, A. A.
    SMPR CONFERENCE 2013, 2013, 40-1-W3 : 107 - 110
  • [15] Improving texture extraction and classification using smoothed morphological operators
    Neiva, Mariane Barros
    Vacavant, Antoine
    Bruno, Odemir Martinez
    DIGITAL SIGNAL PROCESSING, 2018, 83 : 24 - 34
  • [16] Improving Uncertainty Estimations for Mammogram Classification using Semi-Supervised Learning
    Calderon-Ramirez, Saul
    Murillo-Hernandez, Diego
    Rojas-Salazar, Kevin
    Calvo-Valverde, Luis-Alexander
    Yang, Shengxiang
    Moemeni, Armaghan
    Elizondo, David
    Lopez-Rubio, Ezequiel
    Molina-Cabello, Miguel A.
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [17] IMPROVING LINEAR CLASSIFICATION USING SEMI- SUPERVISED INVERTIBLE MANIFOLD ALIGNMENT
    Gross, Wolfgang
    Espinosa, Nayeli
    Becker, Merlin
    Schreiner, Simon
    Middelmann, Wolfgang
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3551 - 3554
  • [18] Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning
    Golhar, Mayank
    Bobrow, Taylor L.
    Khoshknab, Mirmilad Pourmousavi
    Jit, Simran
    Ngamruengphong, Saowanee
    Durr, Nicholas J.
    IEEE ACCESS, 2021, 9 : 631 - 640
  • [19] THE EFFECT OF SUPERVISED FEATURE EXTRACTION TECHNIQUES ON THE FACIES CLASSIFICATION USING MACHINE LEARNING
    Okhovvata, Hamid Reza
    Riahib, Mohammad Ali
    Abedi, Mohammad Mahdi
    JOURNAL OF SEISMIC EXPLORATION, 2022, 31 (06): : 563 - 577
  • [20] Improving information extraction using a probability-based approach
    Kim, Sanghee
    Ahmed, Saeema
    Wallace, Ken
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2007, 53 (7-8): : 429 - 441