Development of advanced low temperature co-fired ceramics (LTCC)

被引:10
|
作者
Rabe, T [1 ]
Gemeinert, M [1 ]
Schiller, WA [1 ]
机构
[1] Fed Inst Mat Res & Testing, D-12200 Berlin, Germany
来源
EURO CERAMICS VIII, PTS 1-3 | 2004年 / 264-268卷
关键词
LTCC; zero shrinkage sintering; multilayer; material development;
D O I
10.4028/www.scientific.net/KEM.264-268.1181
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An important advantage of LTCC is the huge variability concerning an attainable property spectrum. Both crystalline and glassy raw materials can be combined and different material concepts (e.g. glass ceramic composites, glass bonded ceramics) are available. The combination of tapes with tailored proper-ties (e.g. permittivity, sintering behaviour....) inside of one laminate further expands the variability of LTCC. Special miniaturized microwave modules were produced by combination of LTCC tapes with low and medium permittivities. Low shrinkage in lateral direction and low tolerances of shrinkage are an indispensable precondition for high-density component configuration in LTCC modules. A proper combination of tapes with separate sintering ranges can be used to prevent lateral shrinkage. First results of this alternative "zero shrinkage" concept (without sacrificial tapes) are presented.
引用
收藏
页码:1181 / 1184
页数:4
相关论文
共 50 条
  • [31] Electrical and Mechanical Characterization of Low Temperature Co-fired Ceramics for High Temperature Sensor Applications
    Bienert, C.
    Roosen, A.
    Grosser, M.
    Ziegler, M.
    Schmid, U.
    SMART SENSORS, ACTUATORS, AND MEMS IV, 2009, 7362
  • [32] Synthesis and properties of borosilicate/AlN composite for low temperature co-fired ceramics application
    Yuan, Lina
    Liu, Bin
    Shen, Nana
    Zhai, Tong
    Yang, De'an
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 593 : 34 - 40
  • [33] Gadolinium zinc borate glass-based low temperature Co-fired ceramics
    Yeon Hwa Jo
    Deuk Ho Yeon
    Bhaskar C. Mohanty
    Yong Soo Cho
    Metals and Materials International, 2008, 14 : 493 - 496
  • [34] Gadolinium zinc borate glass-based low temperature co-fired ceramics
    Jo, Yeon Hwa
    Yeon, Deuk Ho
    Mohanty, Bhaskar C.
    Cho, Yong Soo
    METALS AND MATERIALS INTERNATIONAL, 2008, 14 (04) : 493 - 496
  • [35] Monolithic Microwave-Microfluidic Sensors Made with Low Temperature Co-Fired Ceramic (LTCC) Technology
    Malecha, Karol
    Jasinska, Laura
    Grytsko, Anna
    Drzozga, Kamila
    Slobodzian, Piotr
    Cabaj, Joanna
    SENSORS, 2019, 19 (03):
  • [36] Low Temperature Co-fired Ceramics Plasma Generator for Atmospheric Pressure Gas Spectroscopy
    Macioszczyk, Jan
    Malecha, Karol
    Roguszczak, Henryk
    Patela, Sergiusz
    Golonka, Leszek
    28TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS (EUROSENSORS 2014), 2014, 87 : 1147 - 1151
  • [37] Ferrimagnetic garnets for Low Temperature Co-fired Ceramics micro-wave circulators
    Qassym, L.
    Laur, V.
    Lebourgeois, R.
    Queffelec, P.
    2018 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM - IMS, 2018, : 750 - 752
  • [38] Low temperature co-fired ceramics plasma generator for atmospheric pressure gas spectroscopy
    Macioszczyk, Jan
    Malecha, Karol
    Roguszczak, Henryk
    Patela, Sergiusz
    Golonka, Leszek J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2015, 223 : 174 - 179
  • [39] Laser direct-write and its application in low temperature Co-fired ceramic (LTCC) technology
    Zhang, CP
    Liu, D
    Mathews, SA
    Graves, J
    Schaefer, TM
    Gilbert, BK
    Modi, R
    Wu, HD
    Chrisey, DB
    MICROELECTRONIC ENGINEERING, 2003, 70 (01) : 41 - 49
  • [40] Small ozone generator fabricated from low-temperature co-fired ceramics
    Makarovic, Kostja
    Belavic, Darko
    Malic, Barbara
    Bencan, Andreja
    Kovac, Franci
    Holc, Janez
    MICROELECTRONICS INTERNATIONAL, 2021, 38 (01) : 1 - 5