Maximal regularity for stochastic convolutions driven by L,vy processes

被引:49
作者
Brzezniak, Zdzislaw [1 ]
Hausenblas, Erika [2 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
Stochastic convolution; Time homogeneous Poisson random measure and maximal regularity; Martingale type p Banach spaces; EVOLUTION EQUATIONS; MARTINGALES; SPACES;
D O I
10.1007/s00440-008-0181-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25-29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.
引用
收藏
页码:615 / 637
页数:23
相关论文
共 32 条
[1]  
[Anonymous], 1986, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics
[2]  
[Anonymous], 1986, Probability in Banach spaces-stable and infinitely divisible distributions
[3]   GAUSSIAN MEASURES ON FUNCTION SPACES [J].
BAXENDALE, P .
AMERICAN JOURNAL OF MATHEMATICS, 1976, 98 (04) :891-952
[4]  
Brzeniak Z., 1997, STOCHASTICS STOCHAST, V61, P245
[5]   Some remarks on Ito and Stratonovich integration in 2-smooth Banach spaces [J].
Brzezniak, Z .
PROBABILISTIC METHODS IN FLUIDS, PROCEEDINGS, 2003, :48-69
[6]   Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces [J].
Brzezniak, Z ;
Gatarek, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) :187-225
[7]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74
[8]   STOCHASTIC PARTIAL-DIFFERENTIAL EQUATIONS IN M-TYPE-2 BANACH-SPACES [J].
BRZEZNIAK, Z .
POTENTIAL ANALYSIS, 1995, 4 (01) :1-45
[9]  
Brzezniak Z., 2000, METHODS FUNCT ANAL T, V6, P43
[10]  
BRZEZNIAK Z, 1991, STOCHASTIC PDES M TY