Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation

被引:74
作者
Jackson, RK [1 ]
Weinstein, MI
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[3] Bell Labs, Fundamental Math Res Dept, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
nonlinear Schrodinger equation; Bose-Einstein condensate; standing waves; symmetry breaking; linear instability;
D O I
10.1023/B:JOSS.0000037238.94034.75
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gross-Pitaevskii and nonlinear Hartree equations are equations of nonlinear Schrodinger type that play an important role in the theory of Bose-Einstein condensation. Recent results of Aschbacher et al.((3)) demonstrate, for a class of 3-dimensional models, that for large boson number (squared L-2 norm), N, the ground state does not have the symmetry properties of the ground state at small N. We present a detailed global study of the symmetry breaking bifurcation for a 1-dimensional model Gross-Pitaevskii equation, in which the external potential (boson trap) is an attractive double-well, consisting of two attractive Dirac delta functions concentrated at distinct points. Using dynamical systems methods, we present a geometric analysis of the symmetry breaking bifurcation of an asymmetric ground state and the exchange of dynamical stability from the symmetric branch to the asymmetric branch at the bifurcation point.
引用
收藏
页码:881 / 905
页数:25
相关论文
共 50 条
  • [21] Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases
    Elliott H. Lieb
    Robert Seiringer
    Communications in Mathematical Physics, 2006, 264 : 505 - 537
  • [22] Remarks on the Derivation of Gross-Pitaevskii Equation with Magnetic Laplacian
    Olgiati, Alessandro
    ADVANCES IN QUANTUM MECHANICS: CONTEMPORARY TRENDS AND OPEN PROBLEMS, 2017, 18 : 257 - 266
  • [23] ON THE CAUCHY PROBLEM AND THE BLACK SOLITONS OF A SINGULARLY PERTURBED GROSS-PITAEVSKII EQUATION
    Ianni, Isabella
    Le Coz, Stefan
    Royer, Julien
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1060 - 1099
  • [24] Variational Approach to the Orbital Stability of Standing Waves of the Gross-Pitaevskii Equation
    Selem, Fouad Hadj
    Hajaiej, Hichem
    Markowich, Peter A.
    Trabelsi, Saber
    MILAN JOURNAL OF MATHEMATICS, 2014, 82 (02) : 273 - 295
  • [25] Analysis and computation for the semiclassical limits of the ground and excited states of the Gross-Pitaevskii equation
    Bao, Weizhu
    Lim, Fong Yin
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 1, 2009, 67 : 195 - +
  • [26] Profiles of Blow-up Solutions for the Gross-Pitaevskii Equation
    Zhu, Shi-hui
    Zhang, Jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (04): : 597 - 606
  • [27] SOLUTIONS OF GROSS-PITAEVSKII EQUATION WITH PERIODIC POTENTIAL IN DIMENSION THREE
    Karpeshina, YU.
    Kim, Seonguk
    Shterenberg, R.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (01) : 153 - 169
  • [28] Kinetic Thomas-Fermi solutions of the Gross-Pitaevskii equation
    Oelschlaeger, M.
    Wirth, G.
    Smith, C. Morais
    Hemmerich, A.
    OPTICS COMMUNICATIONS, 2009, 282 (07) : 1472 - 1477
  • [29] Upper bound of weak-limitation for the Gross-Pitaevskii equation
    Jiang, Yi
    Zhu, Shihui
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) : 488 - 494
  • [30] Accuracy of the Gross-Pitaevskii Equation in a Double-Well Potential
    Sakhel, Asaad R.
    Ragan, Robert J.
    Mullin, William J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2024, 216 (5-6) : 683 - 697