Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation

被引:74
|
作者
Jackson, RK [1 ]
Weinstein, MI
机构
[1] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[3] Bell Labs, Fundamental Math Res Dept, Murray Hill, NJ 07974 USA
基金
美国国家科学基金会;
关键词
nonlinear Schrodinger equation; Bose-Einstein condensate; standing waves; symmetry breaking; linear instability;
D O I
10.1023/B:JOSS.0000037238.94034.75
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gross-Pitaevskii and nonlinear Hartree equations are equations of nonlinear Schrodinger type that play an important role in the theory of Bose-Einstein condensation. Recent results of Aschbacher et al.((3)) demonstrate, for a class of 3-dimensional models, that for large boson number (squared L-2 norm), N, the ground state does not have the symmetry properties of the ground state at small N. We present a detailed global study of the symmetry breaking bifurcation for a 1-dimensional model Gross-Pitaevskii equation, in which the external potential (boson trap) is an attractive double-well, consisting of two attractive Dirac delta functions concentrated at distinct points. Using dynamical systems methods, we present a geometric analysis of the symmetry breaking bifurcation of an asymmetric ground state and the exchange of dynamical stability from the symmetric branch to the asymmetric branch at the bifurcation point.
引用
收藏
页码:881 / 905
页数:25
相关论文
共 50 条
  • [1] Geometric Analysis of Bifurcation and Symmetry Breaking in a Gross—Pitaevskii Equation
    R. K. Jackson
    M. I. Weinstein
    Journal of Statistical Physics, 2004, 116 : 881 - 905
  • [2] LONG TIME DYNAMICS NEAR THE SYMMETRY BREAKING BIFURCATION FOR NONLINEAR SCHRODINGER/GROSS-PITAEVSKII EQUATIONS
    Marzuola, Jeremy L.
    Weinstein, Michael I.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1505 - 1554
  • [3] The inverse problem for the Gross-Pitaevskii equation
    Malomed, Boris A.
    Stepanyants, Yury A.
    CHAOS, 2010, 20 (01)
  • [4] Numerical solution for the Gross-Pitaevskii equation
    Hua, Wei
    Liu, Xueshen
    Ding, Peizhu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 243 - 255
  • [5] On the bilinear control of the Gross-Pitaevskii equation
    Chambrion, Thomas
    Thomann, Laurent
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (03): : 605 - 626
  • [6] Adiabatic theorem for the Gross-Pitaevskii equation
    Gang, Zhou
    Grech, Philip
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) : 731 - 756
  • [7] Quantitative Derivation of the Gross-Pitaevskii Equation
    Benedikter, Niels
    de Oliveira, Gustavo
    Schlein, Benjamin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1399 - 1482
  • [8] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [9] Travelling waves for the Gross-Pitaevskii equation, I
    Bethuel, F
    Saut, JC
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 70 (02): : 147 - 238
  • [10] ON THE LINEAR WAVE REGIME OF THE GROSS-PITAEVSKII EQUATION
    Bethuel, Fabrice
    Danchin, Raphael
    Smets, Didier
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 : 297 - 338