Existence of solution for a singular elliptic system with convection terms

被引:7
作者
Correa, Francisco Julio S. A. [1 ]
dos Santos, Gelson C. G. [2 ]
Tavares, Leandro S. [3 ]
Muhassua, Sabado Saide [4 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Fed Para, Fac Matemat, BR-66075110 Belem, PA, Brazil
[3] Univ Fed Cariri, Ctr Ciencias & Tecnol, BR-63048080 Juazeiro Do Norte, CE, Brazil
[4] Univ Rovuma, Fac Ciencias Nat Matemat & Estat, Nampula 544, Mozambique
关键词
Quasilinear operator; Singular elliptic system; Convection term; Hardy-Sobolev inequality; Approximation argument; LINEAR SCHRODINGER-EQUATIONS; NONLINEAR DIRICHLET PROBLEM; POSITIVE SOLUTIONS; NONEXISTENCE; BIFURCATION; SOLITON; GROWTH;
D O I
10.1016/j.nonrwa.2022.103549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we use the dual approach introduced by Colin and Jeanjean (2004) and Liu et al. (2003) combined with a Rabinowitz's result, Galerkin's method and an approximation argument to show the existence of solution for the following quasilinear Schrodinger elliptic system with both singular and convection terms & nbsp;& nbsp;{delta- z - delta(z(2))z = mu(1)w theta 1 z-(gamma 1) + z alpha 1 + | backward difference w|eta 1 in omega,& nbsp;delta & nbsp;w - delta(w(2))w = mu(2)z(theta 2) w-(gamma 2) + w alpha 2 + | backward difference z|eta 2 in 1 omega & nbsp;, z, w > 0 in 1 omega, z = w = 0 on & part;& nbsp;omega,& nbsp;where omega is a bounded domain of N (N >= 3) with smooth boundary, mu(i), theta(i), gamma(i), alpha(i) eta(i) > 0, i = 1,2 are real parameters.(C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 49 条
[1]   Some remarks on elliptic problems with critical growth in the gradient [J].
Abdellaoui, B ;
Dall'Aglio, A ;
Peral, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :21-62
[2]   Uniqueness of the ground state solutions of quasilinear Schrodinger equations [J].
Adachi, Shinji ;
Watanabe, Tatsuya .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :819-833
[3]   On the existence of positive solution for a class of singular systems involving quasilinear operators [J].
Alves, Claudianor O. ;
Correa, Francisco J. S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :727-736
[4]   Uniqueness in Wloc1,p(x) (Ω) and continuity up to portions of the boundary of positive solutions for a strongly-singular elliptic problem [J].
Alves, Claudianor O. ;
Santos, Carlos Alberto ;
Siqueira, Thiago Willians .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) :11279-11327
[5]   ON A CLASS OF INTERMEDIATE LOCAL-NONLOCAL ELLIPTIC PROBLEMS [J].
Alves, Claudianor O. ;
Correa, Francisco Julio S. A. ;
Chipot, Michel .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (02) :497-509
[6]   Existence of solutions for a class of singular elliptic systems with convection term [J].
Alves, Claudianor O. ;
Moussaoui, Abdelkrim .
ASYMPTOTIC ANALYSIS, 2014, 90 (3-4) :237-248
[7]  
Alves CO, 2010, ELECTRON J DIFFER EQ
[8]   About existence and regularity of positive solutions for a quasilinear Schrodinger equation with singular nonlinearity [J].
Alves, Ricardo Lima ;
Reis, Mariana .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (60) :1-23
[9]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[10]  
[Anonymous], 1971, J. Funct. Anal., DOI [10.1016/0022-1236(71)90030-9, DOI 10.1016/0022-1236(71)90030-9]