Existence of solution for a singular elliptic system with convection terms

被引:7
作者
Correa, Francisco Julio S. A. [1 ]
dos Santos, Gelson C. G. [2 ]
Tavares, Leandro S. [3 ]
Muhassua, Sabado Saide [4 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Fed Para, Fac Matemat, BR-66075110 Belem, PA, Brazil
[3] Univ Fed Cariri, Ctr Ciencias & Tecnol, BR-63048080 Juazeiro Do Norte, CE, Brazil
[4] Univ Rovuma, Fac Ciencias Nat Matemat & Estat, Nampula 544, Mozambique
关键词
Quasilinear operator; Singular elliptic system; Convection term; Hardy-Sobolev inequality; Approximation argument; LINEAR SCHRODINGER-EQUATIONS; NONLINEAR DIRICHLET PROBLEM; POSITIVE SOLUTIONS; NONEXISTENCE; BIFURCATION; SOLITON; GROWTH;
D O I
10.1016/j.nonrwa.2022.103549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we use the dual approach introduced by Colin and Jeanjean (2004) and Liu et al. (2003) combined with a Rabinowitz's result, Galerkin's method and an approximation argument to show the existence of solution for the following quasilinear Schrodinger elliptic system with both singular and convection terms & nbsp;& nbsp;{delta- z - delta(z(2))z = mu(1)w theta 1 z-(gamma 1) + z alpha 1 + | backward difference w|eta 1 in omega,& nbsp;delta & nbsp;w - delta(w(2))w = mu(2)z(theta 2) w-(gamma 2) + w alpha 2 + | backward difference z|eta 2 in 1 omega & nbsp;, z, w > 0 in 1 omega, z = w = 0 on & part;& nbsp;omega,& nbsp;where omega is a bounded domain of N (N >= 3) with smooth boundary, mu(i), theta(i), gamma(i), alpha(i) eta(i) > 0, i = 1,2 are real parameters.(C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 49 条