Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting

被引:110
作者
Li, Fei [1 ]
Wang, Xiandi [2 ]
Xia, Zhiguo [1 ]
Pan, Caofeng [2 ]
Liu, Quanlin [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing Municipal Key Lab New Energy Mat & Techno, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Natl Ctr Nanosci & Technol NCNST, Beijing 100083, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
LIGHT-EMITTING-DIODES; SENSOR MATRIX; STRAIN SENSOR; SOLAR-CELL; NANOCRYSTALS; ELECTRONICS; LUMINESCENT; EFFICIENCY; DEVICES; TRANSPARENT;
D O I
10.1002/adfm.201700051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of new luminescent materials for anticounterfeiting is of great importance, owing to their unique physical, chemical, and optical properties. The authors report the use of color-tunable colloidal CdS/ZnS/ZnS:Mn2+/ZnS core/multishell quantum dots (QDs)-functionalized luminescent polydimethylsiloxane film (LPF) for anticounterfeiting applications. Both luminescent QDs and as-fabricated, stretchable, and transparent LPF show blue and orange emission simultaneously, which are ascribed to CdS band-edge emission and the T-4(1) -> (6)A(1) transition of Mn2+, respectively; their emission intensity ratios are dependent on the power-density of a single-wavelength excitation source. Additionally, photoluminescence tuning of CdS/ZnS/ZnS:Mn2+/ZnS QDs in hexane or embedded in LPF can also be realized under fixed excitation power due to a resonance energy transfer effect. Tunable photoluminescence of these flexible LPF grafted doped core/shell QDs can be finely controlled and easily realized, depending on outer excitation power and intrinsic QD concentration, which is intriguing and inspires the fabrication of many novel applications.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Forster Resonance Energy Transfer Relays: Characterization and Biosensing [J].
Algar, W. Russ ;
Wegner, David ;
Huston, Alan L. ;
Blanco-Canosa, Juan B. ;
Stewart, Michael H. ;
Armstrong, Anika ;
Dawson, Philip E. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1876-1891
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks [J].
Andres, Julien ;
Hersch, Roger D. ;
Moser, Jacques-Edouard ;
Chauvin, Anne-Sophie .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5029-5036
[4]   All-Printed Stretchable Electrochemical Devices [J].
Bandodkar, Amay J. ;
Nunez-Flores, Rogelio ;
Jia, Wenzhao ;
Wang, Joseph .
ADVANCED MATERIALS, 2015, 27 (19) :3060-3065
[5]   Flexible and Controllable Piezo-Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p-Polymer LED Array [J].
Bao, Rongrong ;
Wang, Chunfeng ;
Dong, Lin ;
Yu, Ruomeng ;
Zhao, Kun ;
Wang, Zhong Lin ;
Pan, Caofeng .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (19) :2884-2891
[6]   Stretchable and self-healing polymers and devices for electronic skin [J].
Benight, Stephanie J. ;
Wang, Chao ;
Tok, Jeffrey B. H. ;
Bao, Zhenan .
PROGRESS IN POLYMER SCIENCE, 2013, 38 (12) :1961-1977
[8]   Piezotronic Effect Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire Biosensor [J].
Cao, Xiaotao ;
Cao, Xia ;
Guo, Huijuan ;
Li, Tao ;
Jie, Yang ;
Wang, Ning ;
Wang, Zhong Lin .
ACS NANO, 2016, 10 (08) :8038-8044
[9]  
Chae SH, 2013, NAT MATER, V12, P403, DOI [10.1038/NMAT3572, 10.1038/nmat3572]
[10]   Excitation-Intensity-Dependent Color-Tunable Dual Emissions from Manganese-Doped CdS/ZnS Core/Shell Nanocrystals [J].
Chen, Ou ;
Shelby, Daniel E. ;
Yang, Yongan ;
Zhuang, Jiaqi ;
Wang, Tie ;
Niu, Chenggang ;
Omenetto, Nicolo ;
Cao, Y. Charles .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (52) :10132-10135