An Elliptic Hypergeometric Function Approach to Branching Rules

被引:2
作者
Lee, Chul-hee [1 ]
Rains, Eric M. [2 ]
Warnaar, S. Ole [3 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
branching formulas; elliptic hypergeometric series; elliptic Selberg integrals; interpolation functions; Koornwinder polynomials; Littlewood identities; Macdonald polynomials; SUMMATION FORMULAS; MACDONALD; CONJECTURE;
D O I
10.3842/SIGMA.2020.142
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Macdonald-type deformations of a number of well-known classical branching rules by employing identities for elliptic hypergeometric integrals and series. We also propose some conjectural branching rules and allied conjectures exhibiting a novel type of vanishing behaviour involving partitions with empty 2-cores.
引用
收藏
页数:52
相关论文
共 32 条