Alexander duality for Stanley-Reisner rings and squarefree Nn-graded modules

被引:100
作者
Yanagawa, K [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 560, Japan
关键词
D O I
10.1006/jabr.1999.8130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S = k[x(1),..., x(n)] be a polynomial ring, and let omega(s) be its canonical module. First, we will define squarefreeness for N-n-graded S-modules. A Stanley-Reisner ring k[Delta] = S/I-Delta, its syzygy module Syz(i)(k[Delta]), and Ex(s)(i)(k[Delta], omega(s)) are always squarefree. This notion will simplify some standard arguments in the Stanley-Reisner ring theory. Next, we will prove that the i-linear strand of the minimal free resolution of a Stanley-Reisner ideal I-Delta subset of S has the "same information" as the module structure of Ext(s)(i)(k[Delta(v)], omega(s)), where Delta(v) is the Alexander dual of Delta. In particular, if k[Delta] has a linear resolution, we can describe its minimal free resolution using the module structure of the canonical module of k[Delta(v)], which is Cohen-Macaulay in this case. We can also give a new interpretation of a result of Herzog and co-workers, which states that k[Delta] is sequentially Cohen-Macaulay if and only if I(Delta)v is componentwise linear. (C) 2000 Academic Press.
引用
收藏
页码:630 / 645
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1996, Combinatorics and commutative algebra
[2]   Extremal Betti numbers and applications to monomial ideals [J].
Bayer, D ;
Charalambous, H ;
Popescu, S .
JOURNAL OF ALGEBRA, 1999, 221 (02) :497-512
[3]  
Bruns W., 1998, COHEN MACAULAY RINGS
[4]   Resolutions of Stanley-Reisner rings and Alexander duality [J].
Eagon, JA ;
Reiner, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (03) :265-275
[5]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[6]   DIRECT METHODS FOR PRIMARY DECOMPOSITION [J].
EISENBUD, D ;
HUNEKE, C ;
VASCONCELOS, W .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :207-235
[7]  
Eisenbud David, 1989, COMMUTATIVE ALGEBRA, V15, P157
[8]   THE CANONICAL MODULE OF A STANLEY-REISNER RING [J].
GRABE, HG .
JOURNAL OF ALGEBRA, 1984, 86 (01) :272-281
[9]   COMPLETE INTERSECTIONS AND CONNECTEDNESS [J].
HARTSHORNE, R .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (03) :497-&
[10]   APPROXIMATION COMPLEXES OF BLOWING-UP RINGS .2. [J].
HERZOG, J ;
SIMIS, A ;
VASCONCELOS, WV .
JOURNAL OF ALGEBRA, 1983, 82 (01) :53-83