A machine learning-based surrogate model to approximate optimal building retrofit solutions

被引:60
|
作者
Thrampoulidis, Emmanouil [1 ,2 ]
Mavromatidis, Georgios [3 ]
Lucchi, Aurelien [4 ]
Orehounig, Kristina [2 ]
机构
[1] Swiss Fed Inst Technol, EEH Power Syst Lab, Zurich, Switzerland
[2] Empa Dubendorf, Lab Urban Energy Syst, Dubendorf, Switzerland
[3] Swiss Fed Inst Technol, Grp Sustainabil & Technol, Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Machine Learning, Data Analyt Lab, Zurich, Switzerland
关键词
Building retrofit; Energy efficiency; Surrogate model; Machine learning; Multi-objective optimization; Pareto-optimal; ARTIFICIAL NEURAL-NETWORKS; COST-OPTIMAL ANALYSIS; MULTIOBJECTIVE OPTIMIZATION; ENERGY RETROFIT; PERFORMANCE; SYSTEMS; METHODOLOGY; RENOVATION; SUPPORT; DESIGN;
D O I
10.1016/j.apenergy.2020.116024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The building sector has the highest share of operational energy consumption and greenhouse gas emissions among all sectors. Environmental targets set by many countries impose the need to improve the environmental footprint of the existing building stock. Building retrofit is considered one of the most promising solutions to-wards this direction. In this paper, a surrogate model for evaluating the necessary building envelope and energy system measures for building retrofit is presented. Artificial neural networks are exploited to build up this model in order to provide a good balance between accuracy and computational cost. The proposed model is trained and tested for the case study of the city of Zurich, in Switzerland, and is compared with one of the most advanced models for building retrofit that uses building simulation and optimization tools. The surrogate model operates on a smaller input set and the time required to derive retrofit solutions is reduced from 3.5 min to 16.4 mu sec. Results show that the proposed model can provide significantly reduced computational cost without compromising accuracy for most of the retrofit dimensions. For instance, the retrofit costs and the energy system selections are approximated with an average accuracy of R-2 = 0.9408 and f 1 score = 0.9450, respectively. Finally, yet importantly, such surrogate retrofit models may effectively be used for bottom-up retrofit analyses for wide areas and can contribute towards accelerating the adoption of retrofit measures.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Approximating optimal building retrofit solutions for large-scale retrofit analysis
    Thrampoulidis, Emmanouil
    Hug, Gabriela
    Orehounig, Kristina
    APPLIED ENERGY, 2023, 333
  • [2] A machine learning-based framework for cost-optimal building retrofit
    Deb, Chirag
    Dai, Zhonghao
    Schlueter, Arno
    APPLIED ENERGY, 2021, 294
  • [3] Review of machine learning-based surrogate models of groundwater contaminant modeling
    Luo, Jiannan
    Ma, Xi
    Ji, Yefei
    Li, Xueli
    Song, Zhuo
    Lu, Wenxi
    ENVIRONMENTAL RESEARCH, 2023, 238
  • [4] An optimal model for a building retrofit with LEED standard as reference protocol
    Michael, Maria
    Zhang, Lijun
    Xia, Xiaohua
    ENERGY AND BUILDINGS, 2017, 139 : 22 - 30
  • [5] Machine learning-based surrogate resilience modeling for preliminary seismic design
    Tang, Qi
    Cui, Yao
    Jia, Jinqing
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [6] Machine learning-based surrogate models for fast impact assessment of a new building on urban local microclimate at design stage
    Zhao, Zeming
    Li, Hangxin
    Wang, Shengwei
    BUILDING AND ENVIRONMENT, 2024, 266
  • [7] A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior
    Mai, Hau T.
    Kang, Joowon
    Lee, Jaehong
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2021, 196
  • [8] Machine Learning-Based Prediction of New Pareto-Optimal Solutions From Pseudo-Weights
    Suresh, Anirudh
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (05) : 1351 - 1365
  • [9] Approximate model predictive building control via machine learning
    Drgona, Jan
    Picard, Damien
    Kvasnica, Michal
    Helsen, Lieve
    APPLIED ENERGY, 2018, 218 : 199 - 216
  • [10] A Machine Learning-Based Surrogate Finite Element Model for Estimating Dynamic Response of Mechanical Systems
    Hashemi, Ali
    Jang, Jinwoo
    Beheshti, Javad
    IEEE ACCESS, 2023, 11 : 54509 - 54525