Hilfer-Katugampola fractional derivatives

被引:114
|
作者
Oliveira, D. S. [1 ]
Capelas de Oliveira, E. [1 ]
机构
[1] Imecc Unicamp, Dept Appl Math, BR-13083859 Campinas, SP, Brazil
关键词
Generalized fractional integral; Hilfer-Katugampola fractional derivative; Fractional differential equation; Volterra integral equation;
D O I
10.1007/s40314-017-0536-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new fractional derivative, the Hilfer-Katugampola fractional derivative. Motivated by the Hilfer derivative this formulation interpolates the well-known fractional derivatives of Hilfer, Hilfer-Hadamard, Riemann-Liouville, Hadamard, Caputo, Caputo-Hadamard, Liouville, Weyl, generalized and Caputo-type. As an application, we consider a nonlinear fractional differential equation with an initial condition using this new formulation. We show that this equation is equivalent to a Volterra integral equation and demonstrate the existence and uniqueness of solution to the nonlinear initial value problem.
引用
收藏
页码:3672 / 3690
页数:19
相关论文
共 50 条