Negative norm stabilization of convection-diffusion problems

被引:12
作者
Bertoluzza, S
Canuto, C
Tabacco, A
机构
[1] CNR, Ist Anal Numer, I-27100 Pavia, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
singularly perturbed problems; convection-diffusion problems; stabilized Galerkin methods; multiscale decompositions; wavelets;
D O I
10.1016/S0893-9659(99)00221-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model convection-diffusion problem in the convection-dominated regime. A functional setting is given for stabilized Galerkin approximations, in which the stabilizing terms are based on inner products of the type H-1/2. These are explicitly computable via multiscale decompositions such as hierarchic al finite elements or wavelets (while classical SUPG or Galerkin/least-squares methods mimic their effect through discrete element-by-element weighted L-2-inner products). (C) 2000 Elsevier Science Ltd. Ail rights reserved.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 11 条
[1]  
BALOCCHI C, 1993, ATT S INT PROBL ATT, P59
[2]   Stabilization by multiscale decomposition [J].
Bertoluzza, S .
APPLIED MATHEMATICS LETTERS, 1998, 11 (06) :129-134
[3]  
BERTOLUZZA S, UNPUB
[4]  
BRAMBLE JH, IN PRESS MATH COMPUT
[5]   b=integral g [J].
Brezzi, F ;
Franca, LP ;
Hughes, TJR ;
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 145 (3-4) :329-339
[6]  
BROOKS RL, 1982, ANN GLACIOL, V3, P32
[7]  
CANUTO C, 1997, IN PRESS APPL COMPUT
[8]  
DAHMEN W, 1996, J FOURIER ANAL APPL, V4, P341
[9]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .8. THE GALERKIN LEAST-SQUARES METHOD FOR ADVECTIVE-DIFFUSIVE EQUATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
HULBERT, GM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 73 (02) :173-189
[10]  
Oswald Peter, 1994, MULTILEVEL FINITE EL