Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth

被引:22
作者
Duzaar, F [1 ]
Kronz, M [1 ]
机构
[1] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
关键词
quasi-convexity; almost minimizers; partial regularity;
D O I
10.1016/S0926-2245(02)00104-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider almost respectively strong almost minimizers to quasi-convex variational integrals. Under a polynomial growth condition on the integrand and conditions on the function omega determing the almost minimality, in particular the assumption that Omega (r) = integral(0)(r) rootomega(rho)rho (-1) drho is finite for some r > 0, we establish almost everywhere C-1-regularity for almost minimizers. Under the weaker assumption that omega is bounded and lim(rhodown arrow0)omega(rho) = 0 we prove almost everywhere C-0,C-alpha-regularity for strong almost minimizers to quasi-convex variational integrals of quadratic growth. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 18 条
[2]  
Ambrosio L., 1999, RIC MAT, V48, P167
[3]  
ANZELLOTTI G, 1983, B UNIONE MAT ITAL, V2C, P195
[4]   REGULARITY THEORY FOR ALMOST MINIMAL CURRENTS [J].
BOMBIERI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1982, 78 (02) :99-130
[5]  
Campanato S, 1965, ANN MAT PUR APPL, V69, P321, DOI 10.1007/BF02414377
[6]  
Campanato S., 1964, ANN SCUOLA NORM-SCI, V18, P137
[7]   Partial regularity for almost minimizers of quasi-convex integrals [J].
Duzaar, F ;
Gastel, A ;
Grotowski, JF .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) :665-687
[8]  
Duzaar F, 2002, J REINE ANGEW MATH, V546, P73
[9]  
EVANS LC, 1986, ARCH RATION MECH AN, V95, P227
[10]  
Federer H., 1969, GEOMETRIC MEASURE TH