Observing Ion Motion in Conjugated Polyelectrolytes with Kelvin Probe Force Microscopy

被引:23
|
作者
Collins, Samuel D. [1 ,2 ]
Mikhnenko, Oleksandr V. [1 ,2 ]
Thanh Luan Nguyen [3 ]
Rengert, Zachary D. [1 ,2 ]
Bazan, Guillermo C. [1 ,2 ]
Woo, Han Young [3 ]
Thuc-Quyen Nguyen [1 ,2 ,4 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Ctr Polymers & Organ Solids, Santa Barbara, CA 93106 USA
[3] Korea Univ, Dept Chem, Seoul 136713, South Korea
[4] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah, Saudi Arabia
来源
ADVANCED ELECTRONIC MATERIALS | 2017年 / 3卷 / 03期
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
EMITTING ELECTROCHEMICAL-CELLS; ELECTRONIC-PROPERTIES; SOLAR-CELLS; POLYMER; DEVICES; INJECTION; FUNCTIONALITIES; INTERLAYERS; TRANSISTORS; EFFICIENCY;
D O I
10.1002/aelm.201700005
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conjugated polyelectrolytes (CPEs) are polymer semiconductors whose properties are affected by the presence of covalently fixed and mobile ions. These structural components lead to interfacial dipoles, electrochemical doping, and mixed ionic and electronic conductivity. While the behavior of ionic carriers is important to a number of CPE applications, it remains difficult to quantify ion transport in films due to interference from electronic carriers; relationships between molecular structure and ion conductivity are thus not well understood. This work demonstrates direct observation of ions in six different CPE films using Kelvin probe force microscopy. Surface potential measurements of thin, planar CPE device structures are used to map the distribution of ions through the simple electrostatic relationship between potential and charge density. The transport of mobile ions within the CPE bulk can be studied through the time-dependent relaxation of bias-stressed CPE films, through which the decay of ion populations near each electrode is measured and carefully modeled, leading to estimated values of ionic mobility and effective ionic carrier density. The results show that ion transport is most strongly impacted by the number of ion-bearing side chains per monomer, which facilitate room temperature ion transport via vibrational motion.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Local Surface Potential of π-Conjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth
    Liscio, Andrea
    Palermo, Vincenzo
    Fenwick, Oliver
    Braun, Slawomir
    Muellen, Klaus
    Fahlman, Mats
    Cacialli, Franco
    Samori, Paolo
    SMALL, 2011, 7 (05) : 634 - 639
  • [22] Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation
    Miyahara, Yoichi
    Topple, Jessica
    Schumacher, Zeno
    Grutter, Peter
    PHYSICAL REVIEW APPLIED, 2015, 4 (05):
  • [23] Peak Force Infrared-Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Zeng, Guanghong
    Otzen, Daniel E.
    Yan, Yong
    Xu, Xiaoji G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (37) : 16083 - 16090
  • [24] Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy
    Schulz, Fabian
    Ritala, Juha
    Krejci, Ondrej
    Seitsonen, Ari Paavo
    Foster, Adam S.
    Liljeroth, Peter
    ACS NANO, 2018, 12 (06) : 5274 - 5283
  • [25] AFM tip characterization by Kelvin probe force microscopy
    Barth, C.
    Hynninen, T.
    Bieletzki, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Heiz, U.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [26] Signal amplitude and sensitivity of the Kelvin probe force microscopy
    Ouisse, T
    Martins, F
    Stark, M
    Huant, S
    Chevrier, J
    APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [27] The influence of surface topography on Kelvin probe force microscopy
    Sadewasser, S.
    Leendertz, C.
    Streicher, F.
    Lux-Steiner, M. Ch
    NANOTECHNOLOGY, 2009, 20 (50)
  • [28] Dual-heterodyne Kelvin probe force microscopy
    Grévin B.
    Husainy F.
    Aldakov D.
    Aumaître C.
    Beilstein Journal of Nanotechnology, 2023, 14 : 1068 - 1084
  • [29] The effect of sample resistivity on Kelvin probe force microscopy
    Weymouth, A. J.
    Giessibl, F. J.
    APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [30] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789