Incremental Global Parameter Estimation in Dynamical Systems

被引:17
|
作者
Michalik, Claas [1 ]
Chachuat, Benoit [2 ]
Marquardt, Wolfgang [1 ]
机构
[1] Rhein Westfal TH Aachen, AVT Proc Syst Engn, D-52064 Aachen, Germany
[2] Ecole Polytech Fed Lausanne, Lab Automat, CH-1015 Lausanne, Switzerland
关键词
NUMERICAL-METHODS; OPTIMIZATION; IDENTIFICATION; DESIGN; BOOTSTRAP; ALGORITHM;
D O I
10.1021/ie8015472
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Estimating the parameters of a dynamical system based on measurements is an important task in industrial and scientific practice. Since a model's quality is directly linked to its parameter values, obtaining globally rather than locally optimal values is especially important in this context. In practice, however, local methods, are used almost exclusively. This is mainly due to the high computational cost of global dynamic parameter estimation, which limits its application to relatively small problems comprising no more than a few equations and parameters. In addition, there is still a lack of software packages that allow global parameter estimation in dynamical systems without expert knowledge. Therefore, we propose an efficient computational method for obtaining globally optimal parameter estimates of dynamical systems using well-established, user-friendly software packages. The method is based on the so-called incremental identification procedure, in combination with deterministic global optimization tools for nonlinear programs.
引用
收藏
页码:5489 / 5497
页数:9
相关论文
共 50 条
  • [1] A novel criterion for global incremental stability of dynamical systems
    Vrabel, R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 114
  • [2] PARAMETER ESTIMATION OF NONLINEAR DYNAMICAL-SYSTEMS
    GARG, DP
    BOZIUK, JS
    INTERNATIONAL JOURNAL OF CONTROL, 1972, 15 (06) : 1121 - &
  • [3] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [4] State and dynamical parameter estimation for open quantum systems
    Gambetta, J.
    Wiseman, H.M.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 421051 - 421051
  • [5] Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO
    Ko, Chia-Nan
    Jau, You-Min
    Jeng, Jin-Tsong
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 675 - 689
  • [6] Special Section: Parameter Estimation for Dynamical Systems Introduction
    Gugushvili, Shota
    Klaassen, Chris A. J.
    van der Vaart, Aad W.
    MATHEMATICAL BIOSCIENCES, 2013, 246 (02) : 281 - 282
  • [7] Fast stable parameter estimation for linear dynamical systems
    Carey, M.
    Ramsay, J. O.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 156
  • [8] Bayesian state and parameter estimation of uncertain dynamical systems
    Ching, JY
    Beck, JL
    Porter, KA
    PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (01) : 81 - 96
  • [9] State and dynamical parameter estimation for open quantum systems
    Gambetta, J
    Wiseman, HM
    PHYSICAL REVIEW A, 2001, 64 (04): : 14
  • [10] JOINT STATE AND PARAMETER ESTIMATION FOR BOOLEAN DYNAMICAL SYSTEMS
    Braga-Neto, Ulisses
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 704 - 707