Plotly-Resampler: Effective Visual Analytics for Large Time Series

被引:10
|
作者
Van der Donckt, Jonas [1 ]
Van der Donckt, Jeroen [1 ]
Deprost, Emiel [1 ]
Van Hoecke, Sofie [1 ]
机构
[1] Univ Ghent, IMEC, IDLab, Ghent, Belgium
来源
2022 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS) | 2022年
关键词
Time series; Visual analytics; !text type='Python']Python[!/text; Dash Plotly; Open source; VISUALIZATION;
D O I
10.1109/VIS54862.2022.00013
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual analytics is arguably the most important step in getting acquainted with your data. This is especially the case for time series, as this data type is hard to describe and cannot be fully understood when using for example summary statistics. To realize effective time series visualization, four requirements have to be met; a tool should be (1) interactive, (2) scalable to millions of data points, (3) integrable in conventional data science environments, and (4) highly configurable. We observe that open source Python visualization toolkits empower data scientists in most visual analytics tasks, but lack the combination of scalability and interactivity to realize effective time series visualization. As a means to facilitate these requirements, we created Plotly-Resampler, an open source Python library. Plotly-Resampler is an add-on for Plotly's Python bindings, enhancing line chart scalability on top of an interactive toolkit by aggregating the underlying data depending on the current graph view. Plotly-Resampler is built to be snappy, as the reactivity of a tool qualitatively affects how analysts visually explore and analyze data. A benchmark task highlights how our toolkit scales better than alternatives in terms of number of samples and time series. Additionally, Plotly-Resampler's flexible data aggregation functionality paves the path towards researching novel aggregation techniques. Plotly-Resampler's integrability, together with its configurability, convenience, and high scalability, allows to effectively analyze high-frequency data in your day-to-day Python environment.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 50 条
  • [1] DeepVATS: Deep Visual Analytics for Time Series
    Rodriguez-Fernandez, Victor
    Montalvo-Garcia, David
    Piccialli, Francesco
    Nalepa, Grzegorz J.
    Camacho, David
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [2] VAET: A Visual Analytics Approach for E-transactions Time-Series
    Xie, Cong
    Chen, Wei
    Huang, Xinxin
    Hu, Yueqi
    Barlowe, Scott
    Yang, Jing
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1743 - 1752
  • [3] A Sketch plus Fisheye Interface for Visual Analytics of Large Time-Series
    Ren, Lei
    Du, Yi
    2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 265 - 266
  • [4] Clustering and Classification for Time Series Data in Visual Analytics: A Survey
    Ali, Mohammed
    Alqahtani, Ali
    Jones, Mark W.
    Xie, Xianghua
    IEEE ACCESS, 2019, 7 : 181314 - 181338
  • [5] Visual Analytics of Multivariate Intensive Care Time Series Data
    Brich, N.
    Schulz, C.
    Peter, J.
    Klingert, W.
    Schenk, M.
    Weiskopf, D.
    Krone, M.
    COMPUTER GRAPHICS FORUM, 2022, 41 (06) : 273 - 286
  • [6] Visual Analytics for Model Selection in Time Series Analysis
    Boegl, Markus
    Aigner, Wolfgang
    Filzmoser, Peter
    Lammarsch, Tim
    Miksch, Silvia
    Rind, Alexander
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2237 - 2246
  • [7] A Data Discovery and Visualization Tool for Visual Analytics of Time Series in Digital Agriculture
    Dhaliwal, Jasmin K.
    Galbraith, Megan E.
    Leung, Carson K.
    Tan, Da
    2023 27TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION, IV, 2023, : 268 - 271
  • [8] A visual analytics approach to anomaly detection in hydrocarbon reservoir time series data*
    Soriano-Vargas, Aurea
    Werneck, Rafael
    Moura, Renato
    Mendes Junior, Pedro
    Prates, Raphael
    Castro, Manuel
    Goncalves, Maiara
    Hossain, Manzur
    Zampieri, Marcelo
    Ferreira, Alexandre
    Davolio, Alessandra
    Hamann, Bernd
    Schiozer, Denis Jose
    Rocha, Anderson
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 206
  • [9] MultiSegVA: Using Visual Analytics to Segment Biologging Time Series on Multiple Scales
    Meschenmoser, Philipp
    Buchmuller, Juri F.
    Seebacher, Daniel
    Wikelski, Martin
    Keim, Daniel A.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1623 - 1633
  • [10] A Visual Analytics Approach to Multiscale Exploration of Environmental Time Series
    Sips, Mike
    Koethur, Patrick
    Unger, Andrea
    Hege, Hans-Christian
    Dransch, Doris
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) : 2899 - 2907