Metal-organic framework derived porous hollow ternary sulfide as robust anode material for sodium ion batteries

被引:31
作者
Cao, Dongwei [1 ]
Fan, Weidong [1 ]
Kang, Wenpei [1 ]
Wang, Yuyu [1 ]
Sun, Kaian [2 ]
Zhao, Jinchong [2 ]
Xiao, Zhenyu [1 ]
Sun, Daofeng [1 ]
机构
[1] China Univ Petr East China, Sch Mat Sci & Engn, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] China Univ Petr East China, State Key Lab Heavy Oil Proc, Qingdao 266580, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multicomponent sulfide; Long-term cycling performance; Metal-organic frameworks; Sodium-ion battery; REDUCED GRAPHENE OXIDE; PAIR DISTRIBUTION FUNCTION; LITHIUM-ION; ENERGY-STORAGE; CARBON; CO; COMPOSITES; DESIGN; MOFS;
D O I
10.1016/j.mtener.2018.12.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiple-metal compound materials have been demonstrated as high performance anode materials for energy storage. In this work, porous hollow polyhedron structured multicomponent sulfides and N-doped carbon-based composite (MnS-(ZnCo)S/N-C) is prepared through a gas-solid reaction using Mn, Zn, Co-based ternary metal-organic frameworks as precursor. As sodium ion batteries anode, MnS-(ZnCo)S/N-C exhibits impressive electrochemical performance, especially for the cycling performance at high current. At a current density of 2.0 A g(-1), it delivers a capacity of 316 mAh g(-1) within 400 cycles and a high capacity retention (92.9%) compared with that of the third cycle. Furthermore, the composite electrode maintains a capacity retention of 40% when the current raises from 0.1 to 10.0 A g(-1) step by step. As a robust sodium storage host, this composite anode benefits from porous hollow polyhedron structures composed of primary nanoparticles, N doped C coating on primary particles, and multicomponent sulfides. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 58 条
[1]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[2]   Nitrogen doped hollow MoS2/C nanospheres as anode for long-life sodium-ion batteries [J].
Cai, Yangsheng ;
Yang, Hulin ;
Zhou, Jiang ;
Luo, Zhigao ;
Fang, Guozhao ;
Liu, Sainan ;
Pan, Anqiang ;
Liang, Shuquan .
CHEMICAL ENGINEERING JOURNAL, 2017, 327 :522-529
[3]   Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode [J].
Chen, Jingwei ;
Li, Shaohui ;
Kumar, Vipin ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[4]   100 K cycles: Core-shell H-FeS@C based lithium-ion battery anode [J].
Chen, Suhua ;
Fan, Ling ;
Xu, Lingling ;
Liu, Qian ;
Qin, Yong ;
Lu, Bingan .
ENERGY STORAGE MATERIALS, 2017, 8 :20-27
[5]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[6]   Synergetic compositional and morphological effects for improved Na+ storage properties of Ni3Co6S8-reduced graphene oxide composite powders [J].
Choi, Seung Ho ;
Kang, Yun Chan .
NANOSCALE, 2015, 7 (14) :6230-6237
[7]   ZnS-Sb2S3@C Core-Double Shell Polyhedron Structure Derived from Metal-Organic Framework as Anodes for High Performance Sodium Ion Batteries [J].
Dong, Shihua ;
Li, Caixia ;
Ge, Xiaoli ;
Li, Zhaoqiang ;
Miao, Xianguang ;
Yin, Longwei .
ACS NANO, 2017, 11 (06) :6474-6482
[8]   ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries [J].
Fu, Yun ;
Zhang, Zhian ;
Yang, Xing ;
Gan, Yongqin ;
Chen, Wei .
RSC ADVANCES, 2015, 5 (106) :86941-86944
[9]   Local structural studies on Co doped ZnS nanowires by synchrotron X-ray atomic pair distribution function and micro-Raman shift [J].
Gawai, U. P. ;
Dole, B. N. .
RSC ADVANCES, 2017, 7 (59) :37402-37411
[10]   A study on the synthesis, pair distribution function and diverse properties of cobalt doped ZnS nanowires [J].
Gawai, U. P. ;
Khawal, H. A. ;
Shripathi, T. ;
Dole, B. N. .
CRYSTENGCOMM, 2016, 18 (08) :1439-1445