Deterministic walks as an algorithm of pattern recognition
被引:18
作者:
Campiteli, Monica G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, Brazil
Campiteli, Monica G.
[1
]
Batista, Pablo D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, Brazil
Batista, Pablo D.
[1
]
Kinouchi, Osame
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, Brazil
Kinouchi, Osame
[1
]
Martinez, Alexandre S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, BrazilUniv Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, Brazil
Martinez, Alexandre S.
[1
]
机构:
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, Brazil
来源:
PHYSICAL REVIEW E
|
2006年
/
74卷
/
02期
关键词:
D O I:
10.1103/PhysRevE.74.026703
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
New tools for automatically finding data clusters that share statistical properties in a heterogeneous data set are imperative in pattern recognition research. Here we introduce a deterministic procedure as a tool for pattern recognition in a hierarchical way. The algorithm finds attractors of mutually close points based on the neighborhood ranking. A memory parameter mu acts as a hierarchy parameter, in which the clusters are identified. The final result of the method is a general tree that represents the nesting structure of the data in an invariant way by scale transformation.