Review on the characteristics of flow and heat transfer in printed circuit heat exchangers

被引:171
作者
Huang, Changye [1 ]
Cai, Weihua [1 ]
Wang, Yue [1 ]
Liu, Yao [1 ]
Li, Qian [1 ]
Li, Biao [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Printed circuit heat exchanger; Single-phase flow; Heat transfer; Pressure drop; THERMAL-HYDRAULIC PERFORMANCE; PRESSURE-DROP CORRELATIONS; SUPERCRITICAL CO2; SHELL-SIDE; FILM FLOW; ZIGZAG; CHANNEL; PCHE; CONDENSATION; OPTIMIZATION;
D O I
10.1016/j.applthermaleng.2019.02.131
中图分类号
O414.1 [热力学];
学科分类号
摘要
Printed circuit heat exchanger (PCHE) is a compact heat exchanger with a series of advantages, such as, high ability of heat transfer, bearing high pressure and low temperature, etc., and it presents potential application in the field of new generation of nuclear power, solar thermal power generation, and hydrogen energy in recent years. In such a development situation, this review categorizes and summarizes the recent development related to the characteristics of flow and heat transfer in PCHEs based on results from experiments and numerical simulations. It is shown that present studies are limited to single-phase flow with supercritical carbon dioxide or helium as the working fluid. So, some problems still exist to be investigated, such as, the actual evolution of flow and temperature field, multi-phase flow, high Reynolds-number flow, etc. Finally, it points out some research topics for PCHEs in the future.
引用
收藏
页码:190 / 205
页数:16
相关论文
共 77 条
[1]   Study of various Brayton cycle designs for small modular sodium-cooled fast reactor [J].
Ahn, Yoonhan ;
Lee, Jeong Ik .
NUCLEAR ENGINEERING AND DESIGN, 2014, 276 :128-141
[2]   Effects of wavy channel configurations on thermal-hydraulic characteristics of Printed Circuit Heat Exchanger (PCHE) [J].
Aneesh, A. M. ;
Sharma, Atul ;
Srivastava, Atul ;
Chaudhury, Paritosh .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 118 :304-315
[3]   Thermal-hydraulic characteristics and performance of 3D straight channel based printed circuit heat exchanger [J].
Aneesh, A. M. ;
Sharma, Atul ;
Srivastava, Atul ;
Vyas, K. N. ;
Chaudhuri, Paritosh .
APPLIED THERMAL ENGINEERING, 2016, 98 :474-482
[4]   Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators [J].
Ayub, ZH .
HEAT TRANSFER ENGINEERING, 2003, 24 (05) :3-16
[5]   Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction [J].
Baek, Seungwhan ;
Kim, Jin-Hyuck ;
Jeong, Sangkwon ;
Jung, Jeheon .
CRYOGENICS, 2012, 52 (7-9) :366-374
[6]  
Baek SH, 2011, IMCIC'11: THE 2ND INTERNATIONAL MULTI-CONFERENCE ON COMPLEXITY, INFORMATICS AND CYBERNETICS, VOL I, P8
[7]   Study on CO2 - water printed circuit heat exchanger performance operating under various CO2 phases for S-CO2 power cycle application [J].
Baik, Seungjoon ;
Kim, Seong Gu ;
Lee, Jekyoung ;
Lee, Jeong Ik .
APPLIED THERMAL ENGINEERING, 2017, 113 :1536-1546
[8]   Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors [J].
Bartel, N. ;
Chen, M. ;
Utgikar, V. P. ;
Sun, X. ;
Kim, I. -H. ;
Christensen, R. ;
Sabharwall, P. .
ANNALS OF NUCLEAR ENERGY, 2015, 81 :143-149
[9]  
Brown LC, 2003, GEN
[10]  
Chen M., 2015, INT TOPICAL MEET NUC