Strong laws of large numbers for pairwise quadrant dependent random variables

被引:3
作者
da Silva, Joao Lita [1 ]
机构
[1] NOVA Univ Lisbon, Dept Math & GeoBioTec, Fac Sci & Technol, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Strong law of large numbers; Quadrant dependent random variables; SURE CONVERGENCE; INEQUALITY; SEQUENCES;
D O I
10.1016/j.spl.2018.01.031
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a sequence (X-n, n >= 1} of quadrant dependent random variables satisfying E |X-n| < infinity for all n >= 1 and a family of positive sequences {b(n)), we give sufficient conditions to obtain Sigma(n)(k=1) (X-k - EXk)/b(n) as -> 0. For random sequences which are additionally stochastically dominated by a random variable X is an element of L-p, 1 < p < 2, we shall prove strong laws of large numbers under normalising sequences asymptotically equivalent to n(1/p), 1 < p < 2 up to a logarithm power. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 23 条
[1]  
CHANDRA TK, 1992, SANKHYA SER A, V54, P215
[2]   A strong law of large numbers for nonnegative random variables and applications [J].
Chen, Pingyan ;
Sung, Soo Hak .
STATISTICS & PROBABILITY LETTERS, 2016, 118 :80-86
[3]  
Chow Y.S., 1997, Probability Theory: Independence, Interchangeability, Martingales, Vthird
[4]  
CSORGO S, 1983, ACTA MATH HUNG, V42, P319
[5]   STABLE LIMITS FOR ASSOCIATED RANDOM-VARIABLES [J].
DABROWSKI, AR ;
JAKUBOWSKI, A .
ANNALS OF PROBABILITY, 1994, 22 (01) :1-16
[6]  
EBRAHIMI N, 1981, COMMUN STAT A-THEOR, V10, P307
[7]   ON THE LAWS OF LARGE NUMBERS FOR NONNEGATIVE RANDOM-VARIABLES [J].
ETEMADI, N .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (01) :187-193
[8]   A note on the strong laws of large numbers for random variables [J].
Hu, T-C. ;
Sung, S. H. ;
Volodin, A. .
ACTA MATHEMATICA HUNGARICA, 2016, 150 (02) :412-422
[9]   NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS [J].
JOAGDEV, K ;
PROSCHAN, F .
ANNALS OF STATISTICS, 1983, 11 (01) :286-295
[10]   AN INEQUALITY AND ALMOST SURE CONVERGENCE [J].
KOUNIAS, EG ;
WENG, TS .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (03) :1091-&