共 50 条
EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES
被引:4
|作者:
Biswas, Indranil
[1
]
Dey, Arijit
[2
]
Poddar, Mainak
[3
]
机构:
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[3] Univ Los Andes, Dept Math, Bogota, Colombia
关键词:
smooth toric variety;
logarithmic connection;
equivariant principal bundle;
REDUCTION;
D O I:
10.2140/pjm.2016.280.315
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let M be a smooth complex projective toric variety equipped with an action of a torus T, such that the complement D of the open T-orbit in M is a simple normal crossing divisor. Let G be a complex reductive affine algebraic group. We prove that an algebraic principal G-bundle E-G -> M admits a T-equivariant structure if and only if E-G admits a logarithmic connection singular over D. If E-H -> M is a T-equivariant algebraic principal H-bundle, where H is any complex affine algebraic group, then E-H in fact has a canonical integrable logarithmic connection singular over D.
引用
收藏
页码:315 / 325
页数:11
相关论文