EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES

被引:4
|
作者
Biswas, Indranil [1 ]
Dey, Arijit [2 ]
Poddar, Mainak [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[3] Univ Los Andes, Dept Math, Bogota, Colombia
关键词
smooth toric variety; logarithmic connection; equivariant principal bundle; REDUCTION;
D O I
10.2140/pjm.2016.280.315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth complex projective toric variety equipped with an action of a torus T, such that the complement D of the open T-orbit in M is a simple normal crossing divisor. Let G be a complex reductive affine algebraic group. We prove that an algebraic principal G-bundle E-G -> M admits a T-equivariant structure if and only if E-G admits a logarithmic connection singular over D. If E-H -> M is a T-equivariant algebraic principal H-bundle, where H is any complex affine algebraic group, then E-H in fact has a canonical integrable logarithmic connection singular over D.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [41] The positivity of local equivariant Hirzebruch class for toric varieties
    Rychlewicz, Kamil
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (02) : 560 - 574
  • [42] The equivariant Euler characteristic of real Coxeter toric varieties
    Henderson, Anthony
    Lehrer, Gus
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 515 - 523
  • [43] EQUIVARIANT VECTOR BUNDLES ON T-VARIETIES
    Ilten, Nathan
    Suess, Hendrik
    TRANSFORMATION GROUPS, 2015, 20 (04) : 1043 - 1073
  • [44] Equivariant Ulrich bundles on exceptional homogeneous varieties
    Lee, Kyoung-Seog
    Park, Kyeong-Dong
    ADVANCES IN GEOMETRY, 2021, 21 (02) : 187 - 205
  • [45] PARTIALLY AMPLE LINE BUNDLES ON TORIC VARIETIES
    Broomhead, Nathan
    Ottem, John Christian
    Prendergast-Smith, Artie
    GLASGOW MATHEMATICAL JOURNAL, 2016, 58 (03) : 587 - 598
  • [46] Equivariant K-theory of cellular toric varieties
    Uma, V.
    FUNDAMENTA MATHEMATICAE, 2025,
  • [47] Equivariant Elliptic Cohomology, Toric Varieties, and Derived Equivalences
    Scherotzke, Sarah
    Sibilla, Nicolo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (24) : 14600 - 14636
  • [48] EQUIVARIANT VECTOR BUNDLES ON T-VARIETIES
    NATHAN ILTEN
    HENDRIK SÜSS
    Transformation Groups, 2015, 20 : 1043 - 1073
  • [49] Principal bundles and connections modelled by Lie group bundles
    Castrillon Lopez, Marco
    Rodriguez Abella, Alvaro
    GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [50] Principal bundles and connections modelled by Lie group bundles
    Marco Castrillón López
    Álvaro Rodríguez Abella
    Geometriae Dedicata, 2023, 217