EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES

被引:4
|
作者
Biswas, Indranil [1 ]
Dey, Arijit [2 ]
Poddar, Mainak [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[3] Univ Los Andes, Dept Math, Bogota, Colombia
关键词
smooth toric variety; logarithmic connection; equivariant principal bundle; REDUCTION;
D O I
10.2140/pjm.2016.280.315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth complex projective toric variety equipped with an action of a torus T, such that the complement D of the open T-orbit in M is a simple normal crossing divisor. Let G be a complex reductive affine algebraic group. We prove that an algebraic principal G-bundle E-G -> M admits a T-equivariant structure if and only if E-G admits a logarithmic connection singular over D. If E-H -> M is a T-equivariant algebraic principal H-bundle, where H is any complex affine algebraic group, then E-H in fact has a canonical integrable logarithmic connection singular over D.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条