EQUIVARIANT PRINCIPAL BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES

被引:4
|
作者
Biswas, Indranil [1 ]
Dey, Arijit [2 ]
Poddar, Mainak [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[3] Univ Los Andes, Dept Math, Bogota, Colombia
关键词
smooth toric variety; logarithmic connection; equivariant principal bundle; REDUCTION;
D O I
10.2140/pjm.2016.280.315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth complex projective toric variety equipped with an action of a torus T, such that the complement D of the open T-orbit in M is a simple normal crossing divisor. Let G be a complex reductive affine algebraic group. We prove that an algebraic principal G-bundle E-G -> M admits a T-equivariant structure if and only if E-G admits a logarithmic connection singular over D. If E-H -> M is a T-equivariant algebraic principal H-bundle, where H is any complex affine algebraic group, then E-H in fact has a canonical integrable logarithmic connection singular over D.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 50 条
  • [1] Equivariant vector bundles and logarithmic connections on toric varieties
    Biswas, Indranil
    Munoz, Vicente
    Sanchez, Jonathan
    JOURNAL OF ALGEBRA, 2013, 384 : 227 - 241
  • [2] Equivariant Abelian principal bundles on nonsingular toric varieties
    Dey, Arijit
    Poddar, Mainak
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (05): : 471 - 487
  • [3] TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES
    INDRANIL BISWAS
    ARIJIT DEY
    MAINAK PODDAR
    Transformation Groups, 2020, 25 : 1009 - 1035
  • [4] TANNAKIAN CLASSIFICATION OF EQUIVARIANT PRINCIPAL BUNDLES ON TORIC VARIETIES
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    TRANSFORMATION GROUPS, 2020, 25 (04) : 1009 - 1035
  • [5] A classification of equivariant principal bundles over nonsingular toric varieties
    Biswas, Indranil
    Dey, Arijit
    Poddar, Mainak
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (14)
  • [6] STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2020, 25 : 1787 - 1833
  • [7] Seshadri constants of equivariant vector bundles on toric varieties
    Dasgupta, Jyoti
    Khan, Bivas
    Subramaniam, Aditya
    JOURNAL OF ALGEBRA, 2022, 595 : 38 - 68
  • [8] Principal parts of line bundles on toric varieties
    Perkinson, D
    COMPOSITIO MATHEMATICA, 1996, 104 (01) : 27 - 39
  • [9] ERRATUM FOR "STABILITY OF EQUIVARIANT VECTOR BUNDLES OVER TORIC VARIETIES"
    Dasgupta, Jyoti
    Dey, Arijit
    Khan, Bivas
    DOCUMENTA MATHEMATICA, 2021, 26 : 1271 - 1274
  • [10] Relative connections on principal bundles and relative equivariant structures
    Poddar, Mainak
    Singh, Anoop
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 90