NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE

被引:5
作者
Li, Pengda [1 ]
Xu, Chao [1 ]
Liao, Zhirong [1 ]
Ju, Xing [1 ]
Ye, Feng [1 ]
机构
[1] North China Elect Power Univ, Key Lab Power Stn Energy Transfer Convers & Syst, Beijing 102206, Peoples R China
来源
FRONTIERS IN HEAT AND MASS TRANSFER | 2020年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
latent heat thermal energy storage; cascaded; phase change materials; shell-and-tube heat exchanger; numerical simulation; PHASE-CHANGE MATERIALS; CONCENTRATING SOLAR POWER; EXERGY ANALYSIS; MOLTEN-SALTS; SINGLE-PCM; SYSTEM; ENHANCEMENT; OPTIMIZATION;
D O I
10.5098/hmt.15.10
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study numerically investigates the charging and discharging processes of a three-stages cascaded latent heat thermal energy storage unit using three molten salts as the phase change materials (PCMs). Each stage of the unit is a vertical shell-and-tube heat exchanger, whose shell side is filled with the PCM and air. The liquid fractions, temperatures, and accumulated thermal energy of the PCMs during the fully charging and discharging processes, as well as the effects of the HTF inlet temperature, are analyzed. The results show that lower melting temperature of the PCM causes faster charging rate and more released heat in the cascaded LHTES system. Compared with the non-cascaded LHTES systems, the cascaded LHTES systems can possess better flexibility via the selection of the PCMs.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 41 条
[1]   KNO3/NaNO3 - Graphite materials for thermal energy storage at high temperature: Part I. - Elaboration methods and thermal properties [J].
Acem, Zoubir ;
Lopez, Jerome ;
Del Barrio, Elena Palomo .
APPLIED THERMAL ENGINEERING, 2010, 30 (13) :1580-1585
[2]   Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th. .
APPLIED THERMAL ENGINEERING, 2013, 53 (01) :147-156
[3]   Comparison between the single-PCM and multi-PCM thermal energy storage design [J].
Aldoss, Taha K. ;
Rahman, Muhammad M. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 83 :79-87
[4]   Thermal energy storage materials and systems for solar energy applications [J].
Alva, Guruprasad ;
Liu, Lingkun ;
Huang, Xiang ;
Fang, Guiyin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :693-706
[5]   High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques [J].
Cardenas, Bruno ;
Leon, Noel .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 27 :724-737
[6]   Experimental Investigation of a Cascaded Latent Heat Storage System for Diesel Engine Waste Heat Recovery [J].
Chinnapandian, M. ;
Pandiyarajan, V. ;
Prabhu, A. ;
Velraj, R. .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2015, 37 (12) :1308-1317
[7]   The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials [J].
Cui, Yanbin ;
Liu, Caihong ;
Hu, Shan ;
Yu, Xun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (04) :1208-1212
[8]  
Denholm P., 2011, NRELTP6A2052978, DOI [10.2172/1030440, DOI 10.2172/1030440]
[9]   Exergy analysis for the evaluation of a thermal storage system employing PCMs with different melting temperatures [J].
Domanski, R ;
Fellah, G .
APPLIED THERMAL ENGINEERING, 1996, 16 (11) :907-919
[10]   Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit [J].
Ezra, Moran ;
Kozak, Yoram ;
Dubovsky, Vadim ;
Ziskind, Gennady .
APPLIED THERMAL ENGINEERING, 2016, 93 :315-329