Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips

被引:8
作者
Gelman Constantin, Julian [1 ,2 ]
Carignano, Marcelo A. [3 ]
Corti, Horacio R. [1 ,2 ]
Szleifer, Igal [4 ]
机构
[1] Comis Nacl Energia Atom, Ctr Atom Constituyentes, Dept Fis Mat Condensada, RA-1429 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Quim Fis Mat Med Ambiente & Energia INQUIMAE, Buenos Aires, DF, Argentina
[3] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, Qatar Fdn, Doha, Qatar
[4] Northwestern Univ, Dept Chem, Chem Life Proc Inst, Dept Biomed Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
LIQUID-LIKE LAYER; TRANSITION LAYER; SURFACE; WATER; INTERFACES; GROWTH; ORDER; TEMPERATURE; FILMS;
D O I
10.1021/acs.jpcc.5b10230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have performed extensive molecular dynamics simulations of nanoindentation of an ice slab with model atomic force microscopy (AFM) tips. We found the presence of a quasi-liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), the force versus indentation depth curves present peaks related to the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm) having a size not commensurate with the average monolayer thickness, we did not find a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected.
引用
收藏
页码:27118 / 27124
页数:7
相关论文
共 39 条
[1]   A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow [J].
Bartels-Rausch, T. ;
Jacobi, H. -W. ;
Kahan, T. F. ;
Thomas, J. L. ;
Thomson, E. S. ;
Abbatt, J. P. D. ;
Ammann, M. ;
Blackford, J. R. ;
Bluhm, H. ;
Boxe, C. ;
Domine, F. ;
Frey, M. M. ;
Gladich, I. ;
Guzman, M. I. ;
Heger, D. ;
Huthwelker, Th. ;
Klan, P. ;
Kuhs, W. F. ;
Kuo, M. H. ;
Maus, S. ;
Moussa, S. G. ;
McNeill, V. F. ;
Newberg, J. T. ;
Pettersson, J. B. C. ;
Roeselova, M. ;
Sodeau, J. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (03) :1587-1633
[2]   TRANSITION LAYER ON THE SURFACE ON ICE [J].
BEAGLEHOLE, D ;
NASON, D .
SURFACE SCIENCE, 1980, 96 (1-3) :357-363
[3]   Growth of nanometer thin ice films from water vapor studied using scanning polarization force microscopy [J].
Bluhm, H ;
Salmeron, M .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (15) :6947-6954
[4]   Friction of ice measured using lateral force microscopy [J].
Bluhm, H ;
Inoue, T ;
Salmeron, M .
PHYSICAL REVIEW B, 2000, 61 (11) :7760-7765
[5]   Molecular dynamics study of scanning force microscopy on self-assembled monolayers [J].
Bonner, T ;
Baratoff, A .
SURFACE SCIENCE, 1997, 377 (1-3) :1082-1086
[6]   Interpretation of long-range interatomic force [J].
Buldum, A ;
Ciraci, S ;
Fong, CY ;
Nelson, JS .
PHYSICAL REVIEW B, 1999, 59 (07) :5120-5125
[7]   Analysis of plastic deformation in atomic force microscopy:: Application to ice [J].
Butt, HJ ;
Döppenschmidt, A ;
Hüttl, G ;
Müller, E ;
Vinogradova, OI .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (03) :1194-1203
[8]   Molecular dynamics simulations of ice growth from supercooled water [J].
Carignano, MA ;
Shepson, PB ;
Szleifer, I .
MOLECULAR PHYSICS, 2005, 103 (21-23) :2957-2967
[9]   Simulations of nanotribology with realistic probe tip models [J].
Chandross, Michael ;
Lorenz, Christian D. ;
Stevens, Mark J. ;
Grest, Gary S. .
LANGMUIR, 2008, 24 (04) :1240-1246
[10]   A new order parameter for tetrahedral configurations [J].
Chau, PL ;
Hardwick, AJ .
MOLECULAR PHYSICS, 1998, 93 (03) :511-518