On the rate of convergence of Krasnosel'skiA-Mann iterations and their connection with sums of Bernoullis

被引:40
作者
Cominetti, R. [1 ]
Soto, J. A. [2 ,3 ]
Vaisman, J. [2 ]
机构
[1] Univ Chile, Dept Ingn Ind, Santiago, Chile
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, UMI CNRS 2807, Santiago, Chile
关键词
NONEXPANSIVE-MAPPINGS; ASYMPTOTIC REGULARITY; BANACH-SPACES; FIXED-POINTS; THEOREM; OPERATORS;
D O I
10.1007/s11856-013-0045-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish an estimate for the rate of convergence of the Krasnosel'skiA-Mann iteration for computing fixed points of non-expansive maps. Our main result settles the Baillon-Bruck conjecture [3] on the asymptotic regularity of this iteration. The proof proceeds by establishing a connection between these iterates and a stochastic process involving sums of non-homogeneous Bernoulli trials. We also exploit a new Hoeffdingtype inequality to majorize the expected value of a convex function of these sums using Poisson distributions.
引用
收藏
页码:757 / 772
页数:16
相关论文
共 30 条
[1]  
[Anonymous], CONVERGENCIA FUERTE
[2]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[3]  
Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
[4]  
Baillon J.-B., 1996, Lecture Notes in Pure and Applied Mathematics, V178, P51
[5]  
Baillon J.-B., 1992, P 2 INT C FIX POINT, V128, P27
[6]   Projection and proximal point methods:: convergence results and counterexamples [J].
Bauschke, HH ;
Matousková, E ;
Reich, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (05) :715-738
[7]   KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES [J].
BORWEIN, J ;
REICH, S ;
SHAFRIR, I .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01) :21-28
[8]   SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES [J].
BROWDER, FE ;
PETRYSHYN, WV .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :571-+
[10]  
EDELSTEIN M, 1978, J LOND MATH SOC, V17, P547, DOI 10.1112/jlms/s2-17.3.547