Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries

被引:264
作者
Weng, Guo-Ming [1 ]
Li, Zhejun [1 ]
Cong, Guangtao [1 ]
Zhou, Yucun [1 ]
Lu, Yi-Chun [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Electrochem Energy & Interfaces Lab, Shatin 999077, Hong Kong, Peoples R China
关键词
LITHIUM; PERFORMANCE; PLATINUM; VANADIUM; COMPLEXES; ANIONS; ELECTROLYTE; DIFFRACTION; BEHAVIOR; PROGRESS;
D O I
10.1039/c6ee03554j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly soluble iodide/triiodide (I-/I-3(-)) couples are one of the most promising redox-active species for high-energy-density electrochemical energy storage applications. However, to ensure high reversibility, only two-thirds of the iodide capacity is accessed and one-third of the iodide ions act as a complexing agent to stabilize the iodine (I-2), forming I-3(-)(I2I(-)). Here, we exploit bromide ions (Br-) as a complexing agent to stabilize the iodine, forming iodine-bromide ions (I2Br-), which frees up iodide ions and increases the capacity. Applying this strategy, we demonstrate a novel zinc/iodine-bromide battery to achieve an energy density of 101 W h Lposolyte+negolyte 1 (or 202 W h L-posolyte 1), which is the highest energy density achieved for aqueous flow batteries to date. This strategy can be further generalized to nonaqueous iodide-based batteries (i.e. lithium/polyiodide battery), offering new opportunities to improve high-energy iodide-based energy storage technologies.
引用
收藏
页码:735 / 741
页数:7
相关论文
共 50 条
[1]   Renewable hydrogen generation from a dual-circuit redox flow battery [J].
Amstutz, Veronique ;
Toghill, Kathryn E. ;
Powlesland, Francis ;
Vrubel, Heron ;
Comninellis, Christos ;
Hu, Xile ;
Girault, Hubert H. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2350-2358
[2]   CALIBRATION OF ION SPRAY MASS-SPECTRA USING CLUSTER IONS [J].
ANACLETO, JF ;
PLEASANCE, S ;
BOYD, RK .
ORGANIC MASS SPECTROMETRY, 1992, 27 (06) :660-666
[3]   Reactions of pyridyl donors with halogens and interhalogens: an X-ray diffraction and FT-Raman investigation [J].
Aragoni, MC ;
Arca, M ;
Devillanova, FA ;
Hursthouse, MB ;
Huth, SL ;
Isaia, F ;
Lippolis, V ;
Mancini, A ;
Ogilvie, HR ;
Verani, G .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2005, 690 (08) :1923-1934
[4]   Performance and Degradation of A Lithium-Bromine Rechargeable Fuel Cell Using Highly Concentrated Catholytes [J].
Bai, Peng ;
Bazant, Martin Z. .
ELECTROCHIMICA ACTA, 2016, 202 :216-223
[5]  
Bard A. J., 1985, STANDARD POTENTIALS
[6]   ELECTROCHEMICAL OVERCHARGE PROTECTION OF RECHARGEABLE LITHIUM BATTERIES .1. KINETICS OF IODIDE TRI-IODIDE IODINE REDOX REACTIONS ON PLATINUM IN LIASF6 TETRAHYDROFURAN SOLUTIONS [J].
BEHL, WK ;
CHIN, DT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (01) :16-21
[7]  
Chen H., 2016, ADV ENERGY MATER
[8]   Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries [J].
Chen, Hongning ;
Zou, Qingli ;
Liang, Zhuojian ;
Liu, Hao ;
Li, Quan ;
Lu, Yi-Chun .
NATURE COMMUNICATIONS, 2015, 6
[9]   A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density [J].
Chen, Qing ;
Gerhardt, Michael R. ;
Hartle, Lauren ;
Aziz, Michael J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (01) :A5010-A5013
[10]   THE IODINE IODIDE INTERACTION [J].
DAVIES, M ;
GWYNNE, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1952, 74 (11) :2748-2752