Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete

被引:415
作者
Wang, J. Y. [1 ,2 ,3 ]
Snoeck, D. [1 ,3 ,4 ]
Van Vlierberghe, S. [4 ]
Verstraete, W. [2 ]
De Belie, N. [1 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Magnel Lab Concrete Res, B-9052 Ghent, Belgium
[2] Univ Ghent, Fac Biosci Engn, Lab Microbial Ecol & Technol LabMET, B-9000 Ghent, Belgium
[3] SIM Vzw, Program SHE, SIM, B-9052 Ghent, Belgium
[4] Univ Ghent, Polymer Chem & Biomat Grp, B-9000 Ghent, Belgium
关键词
Self-healing; Crack; Bacteria; Hydrogels; Microbial CaCO3; SUPERABSORBENT POLYMERS; CALCIUM-CARBONATE; CEMENTATION; PROTECTION; DEPOSITION; SPORES; WATER;
D O I
10.1016/j.conbuildmat.2014.06.018
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Bacterial-based self-healing is a promising solution for sustainable concrete maintenance. In this study, bacterial spores were first encapsulated into hydrogels and then were incorporated into specimens to investigate their healing efficiency. The precipitation of CaCO3 by hydrogel-encapsulated spores was demonstrated by Thermogravimetric analysis (TGA). The mortar specimens with hydrogel-encapsulated spores, showed a distinct self-healing superiority: the maximum healed crack width was about 0.5 mm and the water permeability was decreased by 68% in average. Other specimens in non-bacterial series had maximum healed crack width of 0-0.3 mm and the average water permeability was decreased by 15-55% only. (c) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 37 条
[1]   Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation [J].
Achal, Varenyam ;
Pan, Xiangliang ;
Zhang, Daoyong ;
Fu, Qinglong .
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 22 (02) :244-247
[2]  
Al-Fayadh S., 1997, THESIS U GOTHENBURG
[3]  
[Anonymous], 2005, 1961 NBN EN
[4]  
[Anonymous], J INTELL MAT SYST ST
[5]   In situ soil cementation with ureolytic bacteria by surface percolation [J].
Cheng, Liang ;
Cord-Ruwisch, Ralf .
ECOLOGICAL ENGINEERING, 2012, 42 :64-72
[6]   Biocalcification of Sand through Ureolysis [J].
Chou, Chiung-Wen ;
Seagren, Eric A. ;
Aydilek, Ahmet H. ;
Lai, Michael .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2011, 137 (12) :1179-1189
[7]  
Colwell F. S., 2005, SUBSURFACE CONTAMINA, P117, DOI [10.1021/bk-2005-0904.ch006, DOI 10.1021/BK-2005-0904.CH006]
[8]   Bacterial carbonate precipitation improves the durability of cementitious materials [J].
De Muynck, Willem ;
Debrouwer, Dieter ;
De Belie, Nele ;
Verstraete, Willy .
CEMENT AND CONCRETE RESEARCH, 2008, 38 (07) :1005-1014
[9]   Bacterial carbonate precipitation as an alternative surface treatment for concrete [J].
De Muynck, Willem ;
Cox, Kathelijn ;
De Belle, Nele ;
Verstraete, Willy .
CONSTRUCTION AND BUILDING MATERIALS, 2008, 22 (05) :875-885
[10]   Microbially induced cementation to control sand response to undrained shear [J].
DeJong, Jason T. ;
Fritzges, Michael B. ;
Nusslein, Klaus .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2006, 132 (11) :1381-1392