The central limit theorem under random truncation

被引:26
作者
Stute, Winfried [1 ]
Wang, Jane-Ling [2 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
关键词
central limit theorem; Lynden-Bell integral; truncated data;
D O I
10.3150/07-BEJ116
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Under left truncation, data (X(i), Y(i)) are observed only when Y(i) <= X(i). Usually, the distribution function F of the X(i) is the target of interest. In this paper, we study linear functionals integral phi dF(n) of the nonparametric maximum likelihood estimator (MLE) of F, the Lynden-Bell estimator F(n-) A useful representation of integral phi dF(n) is derived which yields asymptotic normality under optimal moment conditions on the score function W. No continuity assumption on F is required. As a by-product, we obtain the distributional convergence of the Lynden-Bell empirical process on the whole real line.
引用
收藏
页码:604 / 622
页数:19
相关论文
共 16 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]   SOME REPRESENTATIONS OF THE NONPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATORS WITH TRUNCATED DATA [J].
CHAO, MT ;
LO, SH .
ANNALS OF STATISTICS, 1988, 16 (02) :661-668
[3]  
He SY, 1998, ANN STAT, V26, P992
[4]  
He SY, 1998, ANN STAT, V26, P1011
[5]   RANDOM TRUNCATION MODELS AND MARKOV-PROCESSES [J].
KEIDING, N ;
GILL, RD .
ANNALS OF STATISTICS, 1990, 18 (02) :582-602
[6]   METHOD OF ALLOWING FOR KNOWN OBSERVATIONAL SELECTION IN SMALL SAMPLES APPLIED TO 3CR QUASARS [J].
LYNDENBELL, D .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1971, 155 (01) :95-+
[7]   Uniform representation of product-limit integrals with applications [J].
Sellero, CS ;
Manteiga, WG ;
Van Keilegom, I .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) :563-581
[8]  
Serfling R.J., 1980, APPROXIMATION THEORE
[9]   THE STRONG LAW UNDER RANDOM CENSORSHIP [J].
STUTE, W ;
WANG, JL .
ANNALS OF STATISTICS, 1993, 21 (03) :1591-1607
[10]   THE CENTRAL-LIMIT-THEOREM UNDER RANDOM CENSORSHIP [J].
STUTE, W .
ANNALS OF STATISTICS, 1995, 23 (02) :422-439