Comparison of heavy-ion transport simulations: Collision integral in a box

被引:116
作者
Zhang, Ying-Xun [1 ,2 ]
Wang, Yong-Jia [3 ]
Colonna, Maria [4 ]
Danielewicz, Pawel [5 ,6 ]
Ono, Akira [7 ]
Tsang, Manyee Betty [5 ,6 ]
Wolter, Hermann [8 ]
Xu, Jun [9 ]
Chen, Lie-Wen [10 ,11 ]
Cozma, Dan [12 ]
Feng, Zhao-Qing [13 ]
Das Gupta, Subal [14 ]
Ikeno, Natsumi [15 ]
Ko, Che-Ming [16 ,17 ]
Li, Bao-An [18 ]
Li, Qing-Feng [3 ,13 ]
Li, Zhu-Xia [1 ]
Mallik, Swagata [19 ]
Nara, Yasushi [20 ]
Ogawa, Tatsuhiko [21 ]
Ohnishi, Akira [22 ]
Oliinychenko, Dmytro [23 ]
Papa, Massimo [4 ]
Petersen, Hannah [23 ,24 ,25 ]
Su, Jun [26 ]
Song, Taesoo [23 ,24 ]
Weil, Janus [23 ]
Wang, Ning [27 ]
Zhang, Feng-Shou [28 ,29 ]
Zhang, Zhen [16 ,17 ]
机构
[1] China Inst Atom Energy, Beijing 102413, Peoples R China
[2] Guangxi Key Lab Breeding Base Nucl Phys & Technol, Guilin 541004, Peoples R China
[3] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[4] INFN LNS, Lab Nazl Sud, I-95123 Catania, Italy
[5] Michigan State Univ, Nat Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[6] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[7] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[8] Ludwig Maximilians Univ Munchen, Fac Phys, D-85748 Garching, Germany
[9] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[10] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China
[11] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200240, Peoples R China
[12] IFIN HH, Magurele 077125, Romania
[13] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China
[14] McGill Univ, Phys Dept, Montreal, PQ H3A 2T8, Canada
[15] Tottori Univ, Dept Life & Environm Agr Sci, Tottori 6808551, Japan
[16] Texas A&M Univ, Cyclotron Inst, College Stn, TX 77843 USA
[17] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[18] Texas A&M Univ Commerce, Dept Phys & Astron, Commerce, TX 75429 USA
[19] Ctr Variable Energy Cyclotron, Phys Grp, 1-AF Bidhan Nagar, Kolkata 700064, India
[20] Akita Int Univ, Akita 0101292, Japan
[21] Japan Atom Energy Agcy, Res Grp Radiat Transport Anal, Tokai, Ibaraki 3191195, Japan
[22] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[23] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[24] Univ Giessen, Inst Theoret Phys, D-35392 Giessen, Germany
[25] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany
[26] Sun Yat Sen Univ, Sinofrench Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
[27] Guangxi Normal Univ, Dept Phys & Technol, Guilin 541004, Peoples R China
[28] Beijing Normal Univ, Coll Nucl Sci & Technol, Key Lab Beam Technol & Mat Modificat, Minist Educ, Beijing 100875, Peoples R China
[29] Beijing Radiat Ctr, Beijing 100875, Peoples R China
基金
日本学术振兴会; 美国国家科学基金会; 中国国家自然科学基金;
关键词
QUANTUM MOLECULAR-DYNAMICS; N-BODY APPROACH; SYMMETRY ENERGY; ISOSPIN PHYSICS; PION-PRODUCTION; EQUATION; MODELS; STATE;
D O I
10.1103/PhysRevC.97.034625
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1% or better) with analytical results, or completely controlled results of a basic cascade code. In order to reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations, like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the future publications.
引用
收藏
页数:20
相关论文
共 59 条
[1]   On stochastic approaches of nuclear dynamics [J].
Abe, Y ;
Ayik, S ;
Reinhard, PG ;
Suraud, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 275 (2-3) :49-196
[2]   HEAVY SYSTEMS AT INTERMEDIATE ENERGIES IN THE BOLTZMANN-UEHLING-UHLENBECK APPROACH [J].
AICHELIN, J .
PHYSICAL REVIEW C, 1986, 33 (02) :537-548
[3]   QUANTUM MOLECULAR-DYNAMICS - A DYNAMIC MICROSCOPIC N-BODY APPROACH TO INVESTIGATE FRAGMENT FORMATION AND THE NUCLEAR-EQUATION OF STATE IN HEAVY-ION COLLISIONS [J].
AICHELIN, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 202 (5-6) :233-360
[4]  
[Anonymous], 2017, 2017 ICNT PROGR
[5]  
[Anonymous], 2016, 6 INT S NUCL SYMM EN
[6]   Microscopic models for ultrarelativistic heavy ion collisions [J].
Bass, SA ;
Belkacem, M ;
Bleicher, M ;
Brandstetter, M ;
Bravina, L ;
Ernst, C ;
Gerland, L ;
Hofmann, M ;
Hofmann, S ;
Konopka, J ;
Mao, G ;
Neise, L ;
Soff, S ;
Spieles, C ;
Weber, H ;
Winckelmann, LA ;
Stocker, H ;
Greiner, W ;
Hartnack, C ;
Aichelin, J ;
Amelin, N .
PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, VOL 41, 1998, 41 :255-369
[7]   A GUIDE TO MICROSCOPIC MODELS FOR INTERMEDIATE ENERGY HEAVY-ION COLLISIONS [J].
BERTSCH, GF ;
DASGUPTA, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 160 (04) :189-233
[8]   THE BOLTZMANN-EQUATION AT THE BORDERLINE - A DECADE OF MONTE-CARLO SIMULATIONS OF A QUANTUM KINETIC-EQUATION [J].
BONASERA, A ;
GULMINELLI, F ;
MOLITORIS, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 243 (1-2) :1-124
[9]   Transport-theoretical description of nuclear reactions [J].
Buss, O. ;
Gaitanos, T. ;
Gallmeister, K. ;
van Flees, H. ;
Kaskulov, M. ;
Lalakulich, O. ;
Larionov, A. B. ;
Leitner, T. ;
Weil, J. ;
Mosel, U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 512 (1-2) :1-124
[10]   Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter [J].
Chen, Lie-Wen ;
Ko, Che Ming ;
Li, Bao-An ;
Xu, Chang ;
Xu, Jun .
EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (02) :1-27