Time-Frequency Spectral Representation Models to Simulate Nonstationary Processes and Their Use to Generate Ground Motions

被引:27
作者
Hong, H. P. [1 ]
Cui, X. Z. [1 ]
机构
[1] Univ Western Ontario, Dept Civil & Environm Engn, London, ON N6A 5B9, Canada
关键词
Simulation; Nonstationary stochastic process; S-transform; Discrete orthonormal S-transform; Multiple-support ground motions; Conditional simulation; EVOLUTIONARY SPECTRA; STOCHASTIC-PROCESSES; S-TRANSFORM; EARTHQUAKE; COHERENCY;
D O I
10.1061/(ASCE)EM.1943-7889.0001827
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present study, two new models are proposed to model nonstationary stochastic processes with time-frequency-dependent spectra and coherence. The models are developed based on the discrete orthonormal S-transform and are enhanced by using the time-frequency representation from the S-transform. One of the models is shown to be usable in carrying out the conditional simulation. A parallel is drawn between the proposed models and those based on the spectral representation method using the ordinary Fourier analysis to facilitate an understanding of the proposed models. Unlike the use of the evolutionary spectral theory, no amplitude modulation or frequency modulation functions need to be assigned and identified for the proposed models because they are included explicitly in the time-frequency spectra. Moreover, the use of the S-transform and discrete orthonormal S-transform provides a familiar time-frequency spectral representation rather than the timescale representation obtained from the wavelet transform. The exposition and use of the models are focused on the simulation of ground motions at single and multiple support, although the models can be equally applicable to nonstationary processes, such as the winds and waves. The adequacy of the simulated ground motion records is assessed in terms of the time-frequency spectral representation and response spectrum. Numerical examples, including conditionally simulate ground motions, are also given.
引用
收藏
页数:16
相关论文
共 46 条
[1]   Evolutionary properties of stochastic models of earthquake accelerograms:: Their dependence on magnitude and distance [J].
Alamilla, J ;
Esteva, L ;
García-Pérez, J ;
Díaz-López, O .
JOURNAL OF SEISMOLOGY, 2001, 5 (01) :1-21
[2]  
[Anonymous], 1962, An Introduction to Multivariate Statistical Analysis
[3]  
[Anonymous], 2000, Wavelet Methods for Time Series Analysis
[4]   Seismic response of SDOF systems by wavelet modeling of nonstationary processes [J].
Basu, B ;
Gupta, VK .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1998, 124 (10) :1142-1150
[5]   Window-dependent bases for efficient representations of the Stockwell transform [J].
Battisti, U. ;
Riba, L. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 40 (02) :292-320
[6]   Simulation of Homogeneous Fluctuating Wind Field in Two Spatial Dimensions via a Joint Wave Number-Frequency Power Spectrum [J].
Chen, Jianbing ;
Song, Yupeng ;
Peng, Yongbo ;
Spanos, Pol D. .
JOURNAL OF ENGINEERING MECHANICS, 2018, 144 (11)
[7]  
Clough R., 2003, DYNAMIC STRUCTURES
[8]  
Cohen L., 1995, TIME FREQUENCY ANAL
[9]   Fully nonstationary analytical earthquake ground-motion model [J].
Conte, JP ;
Peng, BF .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1997, 123 (01) :15-24
[10]   Use of Discrete Orthonormal S-Transform to Simulate Earthquake Ground Motions [J].
Cui, Xi Zhong ;
Hong, Han Ping .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2020, 110 (02) :565-575