Segmentation precision of abdominal anatomy for MRI-based radiotherapy

被引:9
|
作者
Noel, Camille E. [1 ]
Zhu, Fan [1 ]
Lee, Andrew Y. [1 ]
Hu, Yanle [1 ]
Parikh, Parag J. [1 ]
机构
[1] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO 63110 USA
关键词
Intraobserver interobserver contouring; precision; Abdomen; Magnetic resonance imaging; Treatment planning; IMAGE SEGMENTATION; DELINEATION; VALIDATION; CANCER;
D O I
10.1016/j.meddos.2014.02.003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The limited soft tissue visualization provided by computed tomography, the standard imaging modality for radiotherapy treatment planning and daily localization, has motivated studies on the use of magnetic resonance imaging (MRI) for better characterization of treatment sites, such as the prostate and head and neck. However, no studies have been conducted on MRI-based segmentation for the abdomen, a site that could greatly benefit from enhanced soft tissue targeting. We investigated the interobserver and intraobserver precision in segmentation of abdominal organs on MR images for treatment planning and localization. Manual segmentation of 8 abdominal organs was performed by 3 independent observers on MR images acquired from 14 healthy subjects. Observers repeated segmentation 4 separate times for each image set. Interobserver and intraobserver contouring precision was assessed by computing 3-dimensional overlap (Dice coefficient [DC]) and distance to agreement (Hausdorff distance [HD]) of segmented organs. The mean and standard deviation of intraobserver and interobserver DC and HD values were DCintraobserver = 0.89 +/- 0.12, HDintraobserver = 3.6 mm +/- 1.5, DCinterobserver = 0.89 +/- 0.15, and HDinterobserver = 3.2 mm +/- 1.4. Overall, metrics indicated good interobserver/intraobserver precision (mean DC > 0.7, mean HD < 4 mm). Results suggest that MRI offers good segmentation precision for abdominal sites. These findings support the utility of MRI for abdominal planning and localization, as emerging MRI technologies, techniques, and onboard imaging devices are beginning to enable MET-based radiotherapy. (C) 2014 American Association of Medical Dosimetrists.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 50 条
  • [1] A Survey of MRI-Based Brain Tumor Segmentation Methods
    Liu, Jin
    Li, Min
    Wang, Jianxin
    Wu, Fangxiang
    Liu, Tianming
    Pan, Yi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (06) : 578 - 595
  • [2] Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy
    Mark H. F. Savenije
    Matteo Maspero
    Gonda G. Sikkes
    Jochem R. N. van der Voort van Zyp
    Alexis N. T. J. Kotte
    Gijsbert H. Bol
    Cornelis A. T. van den Berg
    Radiation Oncology, 15
  • [3] Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy
    Savenije, Mark H. F.
    Maspero, Matteo
    Sikkes, Gonda G.
    van der Voort van Zyp, Jochem R. N.
    T. J. Kotte, Alexis N.
    Bol, Gijsbert H.
    T. van den Berg, Cornelis A.
    RADIATION ONCOLOGY, 2020, 15 (01)
  • [4] MRI-based simulation of treatment plans for ion radiotherapy in the brain region
    Rank, Christopher M.
    Huenemohr, Nora
    Nagel, Armin M.
    Roethke, Matthias C.
    Jaekel, Oliver
    Greilich, Steffen
    RADIOTHERAPY AND ONCOLOGY, 2013, 109 (03) : 414 - 418
  • [5] A New MRI-Based Pediatric Subcortical Segmentation Technique (PSST)
    Loh, Wai Yen
    Connelly, Alan
    Cheong, Jeanie L. Y.
    Spittle, Alicia J.
    Chen, Jian
    Adamson, Christopher
    Ahmadzai, Zohra M.
    Fam, Lillian Gabra
    Rees, Sandra
    Lee, Katherine J.
    Doyle, Lex W.
    Anderson, Peter J.
    Thompson, Deanne K.
    NEUROINFORMATICS, 2016, 14 (01) : 69 - 81
  • [6] A New MRI-Based Pediatric Subcortical Segmentation Technique (PSST)
    Wai Yen Loh
    Alan Connelly
    Jeanie L. Y. Cheong
    Alicia J. Spittle
    Jian Chen
    Christopher Adamson
    Zohra M. Ahmadzai
    Lillian Gabra Fam
    Sandra Rees
    Katherine J. Lee
    Lex W. Doyle
    Peter J. Anderson
    Deanne K. Thompson
    Neuroinformatics, 2016, 14 : 69 - 81
  • [7] Accurate MRI-Based Brain Tumor Diagnosis: Integrating Segmentation and Deep Learning Approaches
    Ashimgaliyev, Medet
    Matkarimov, Bakhyt
    Barlybayev, Alibek
    Li, Rita Yi Man
    Zhumadillayeva, Ainur
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [8] MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach
    Rank, Christopher M.
    Tremmel, Christoph
    Huenemohr, Nora
    Nagel, Armin M.
    Jaekel, Oliver
    Greilich, Steffen
    RADIATION ONCOLOGY, 2013, 8
  • [9] MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach
    Christopher M Rank
    Christoph Tremmel
    Nora Hünemohr
    Armin M Nagel
    Oliver Jäkel
    Steffen Greilich
    Radiation Oncology, 8
  • [10] MRI-Based Segmentation of Pubic Bone for Evaluation of Pelvic Organ Prolapse
    Onal, Sinan
    Lai-Yuen, Susana K.
    Bao, Paul
    Weitzenfeld, Alfredo
    Hart, Stuart
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (04) : 1370 - 1378