UNIVERSALITY OF THE ACCELERATION DUE TO GRAVITY ON THE SURFACE OF A RAPIDLY ROTATING NEUTRON STAR

被引:62
|
作者
AlGendy, Mohammad [1 ]
Morsink, Sharon M. [1 ,2 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Univ Arizona, Dept Astron, Steward Observ, Tucson, AZ 85721 USA
基金
加拿大自然科学与工程研究理事会;
关键词
gravitation; pulsars: general; stars: neutron; stars: rotation; X-rays: binaries; X-rays: bursts; X-RAY-BURSTS; EQUATION-OF-STATE; RELATIVISTIC STARS; MILLISECOND PULSAR; GENERAL-RELATIVITY; NUMERICAL-METHOD; MODELS; RADIUS; MASS; APPROXIMATION;
D O I
10.1088/0004-637X/791/2/78
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
On the surface of a rapidly rotating neutron star, the effective centrifugal force decreases the effective acceleration due to gravity (as measured in the rotating frame) at the equator while increasing the acceleration at the poles due to the centrifugal flattening of the star into an oblate spheroid. We compute the effective gravitational acceleration for relativistic rapidly rotating neutron stars and show that for a star with mass M, equatorial radius R-e, and angular velocity Omega, the deviations of the effective acceleration due to gravity from the nonrotating case take on a universal form that depends only on the compactness ratio M/R-e, the dimensionless square of the angular velocity Omega R-2(e)3/GM, and the latitude on the star's surface. This dependence is universal, in that it has very little dependence on the neutron star's equation of state. The effective gravity is expanded in the slow-rotation limit to show the dependence on the effective centrifugal force, oblate shape of the star, and the quadrupole moment of the gravitational field. In addition, an empirical fit and simple formula for the effective gravity is found. We find that the increase in the acceleration due to gravity at the poles is of the same order of magnitude as the decrease in the effective acceleration due to gravity at the equator for all realistic value of mass, radius, and spin. For neutron stars that spin with frequencies near 600 Hz, the difference between the effective gravity at the poles and the equator is about 20%.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Rapidly rotating neutron star progenitors
    Postnov, K. A.
    Kuranov, A. G.
    Kolesnikov, D. A.
    Popov, S. B.
    Porayko, N. K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 463 (02) : 1642 - 1650
  • [2] Effects of the treatment of the mass quadrupole moment on ray-tracing applications for rapidly rotating neutron stars
    Andre Oliva, G.
    Frutos-Alfaro, Francisco
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (02) : 2870 - 2885
  • [3] The oblate Schwarzschild approximation for light curves of rapidly rotating neutron stars
    Morsink, Sharon M.
    Leahy, Denis A.
    Cadeau, Coire
    Braga, John
    ASTROPHYSICAL JOURNAL, 2007, 663 (02) : 1244 - 1251
  • [4] Radiation from rapidly rotating oblate neutron stars
    Nattila, J.
    Pihajoki, P.
    ASTRONOMY & ASTROPHYSICS, 2018, 615
  • [5] Differentially-rotating neutron star models with a parametrized rotation profile
    Galeazzi, F.
    Yoshida, S.
    Eriguchi, Y.
    ASTRONOMY & ASTROPHYSICS, 2012, 541
  • [6] Surface of rapidly-rotating neutron stars: Implications to neutron star parameter estimation
    Silva, Hector O.
    Pappas, George
    Yunes, Nicolas
    Yagi, Kent
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [7] Rapidly rotating neutron stars in R-squared gravity
    Yazadjiev, Stoytcho S.
    Doneva, Daniela D.
    Kokkotas, Kostas D.
    PHYSICAL REVIEW D, 2015, 91 (08)
  • [8] Triaxial instabilities in rapidly rotating neutron stars
    Basak, Arkadip
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (01) : 1383 - 1396
  • [9] Oscillations of rapidly rotating stratified neutron stars
    Passamonti, A.
    Haskell, B.
    Andersson, N.
    Jones, D. I.
    Hawke, I.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 394 (02) : 730 - 741
  • [10] Rapidly rotating neutron stars in scalar-tensor theories of gravity
    Doneva, Daniela D.
    Yazadjiev, Stoytcho S.
    Stergioulas, Nikolaos
    Kokkotas, Kostas D.
    PHYSICAL REVIEW D, 2013, 88 (08):