Dynamics and density evolution in piecewise deterministic growth processes

被引:18
作者
Mackey, Michael C. [2 ,3 ,4 ]
Tyran-Kaminska, Marta [1 ,5 ]
机构
[1] Polish Acad Sci, Inst Math, PL-40007 Katowice, Poland
[2] McGill Univ, Dept Physiol, Montreal, PQ H3G 1Y6, Canada
[3] McGill Univ, Dept Math & Phys, Montreal, PQ H3G 1Y6, Canada
[4] McGill Univ, Ctr Nonlinear Dynam, Montreal, PQ H3G 1Y6, Canada
[5] Univ Silesia, Inst Math, PL-40007 Katowice, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
first order partial differential equation; stochastic semigroup; asymptotic stability; invariant density;
D O I
10.4064/ap94-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new sufficient condition is proved for the existence of stochastic semigroups generated by the sum of two unbounded operators. It is applied to one-dimensional piecewise deterministic Markov processes, where we also discuss the existence of a unique stationary density and give sufficient conditions for asymptotic stability.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 25 条
[1]  
[Anonymous], SPRINGER MONOGR MATH
[2]  
Banasiak J, 2001, TAIWAN J MATH, V5, P169
[3]  
Baron K., 1993, ANN POL MATH, V58, P161
[4]   Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression [J].
Bobrowski, Adam ;
Lipniacki, Tomasz ;
Pichor, Katarzyna ;
Rudnicki, Ryszard .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :753-769
[5]   ON THE STABILITY OF THE CELL-SIZE DISTRIBUTION [J].
DIEKMANN, O ;
HEIJMANS, HJAM ;
THIEME, HR .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (02) :227-248
[6]   Linking stochastic dynamics to population distribution: An analytical framework of gene expression [J].
Friedman, Nir ;
Cai, Long ;
Xie, X. Sunney .
PHYSICAL REVIEW LETTERS, 2006, 97 (16)
[7]   A characterization theorem for the evolution semigroup generated by the sum of two unbounded operators [J].
Frosali, G ;
van der Mee, CVM ;
Mugelli, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (06) :669-685
[8]  
Gacki H., 1990, ANN POL MATH, V51, P155
[9]   EXACT STOCHASTIC SIMULATION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (25) :2340-2361
[10]  
Kato T., 1954, J MATH SOC JAPAN, V6, P1