On approximation of approximately generalized quadratic functional equation via Lipschitz criteria

被引:9
作者
EL-Fassi, Iz-iddine [1 ]
机构
[1] Ibn Tofail Univ, Dept Math, Fac Sci, BP 133, Kenitra, Morocco
关键词
Generalized quadratic functional equation; stability; Lipschitz space; STABILITY;
D O I
10.2989/16073606.2018.1479721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an Abelian group with a metric d and E ba a normed space. For any f : G -> E we define the generalized quadratic difference of the function f by the formula Q(k) f (x, y) := f (x + ky) + f (x - ky) - f (x + y) - f (x - y) - 2(k(2) - 1)f (y) for all x, y is an element of G and for any integer k with k not equal 1, -1. In this paper, we achieve the general solution of equation Q(k) f (x, y) = 0, after it, we show that if Q(k) f is Lipschitz, then there exists a quadratic function K : G -> E such that f - K is Lipschitz with the same constant. Moreover, some results concerning the stability of the generalized quadratic functional equation in the Lipschitz norms are presented. In the particular case, if k = 0 we obtain the main result that is in [7].
引用
收藏
页码:651 / 663
页数:13
相关论文
共 26 条
[1]  
Aczel J., 1989, ENCY MATH ITS APPL, V31
[2]  
[Anonymous], 1969, NOSTRAND MATH STUD
[3]  
[Anonymous], 1991, International Journal of Mathematics and Mathematical Sciences, DOI 10.1155/S016117129100056X
[4]  
Aoki T, 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
[5]  
Badora R., 1993, ANN POL MATH, V58, P147, DOI DOI 10.4064/ap-58-2-147-159
[6]   LIPSCHITZ STABILITY OF THE k-QUADRATIC FUNCTIONAL EQUATION [J].
Chahbi, Abdellatif ;
El-Fassi, Iz-Iddine ;
Kabbaj, Samir .
QUAESTIONES MATHEMATICAE, 2017, 40 (08) :991-1001
[7]   Stability of the quadratic functional equation in Lipschitz spaces [J].
Czerwik, S ;
Dlutek, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (01) :79-88
[8]  
Czerwik S., 2004, AEQUATIONES MATH, V67, P1
[9]  
Czerwik S, 2002, FUNCTIONAL EQUATIONS
[10]   ON THE GENERALIZED ORTHOGONAL STABILITY OF THE PEXIDERIZED QUADRATIC FUNCTIONAL EQUATIONS IN MODULAR SPACES [J].
El-Fassi, Iz-Iddine ;
Kabbaj, Samir .
MATHEMATICA SLOVACA, 2017, 67 (01) :165-178