Mitochondrial mRNA editing in trypanosomes is a posttranscriptional processing pathway thereby uridine residues (Us) are inserted into, or deleted from, messenger RNA precursors. By correcting frame-shifts, introducing start and stop codons, and often adding most of the coding sequence, editing restores open reading frames for mitochondrially-encoded mRNAs. There can be hundreds of editing events in a single pre-mRNA, typically spaced by few nucleotides, with U-insertions outnumbering U-deletions by approximately 10-fold. The mitochondrial genome is composed of similar to 50 maxicircles and thousands of minicircles. Catenated maxi- and minicircles are packed into a dense structure called the kinetoplast; maxicircles yield rRNA and mRNA precursors while guide RNAs (gRNAs) are produced predominantly from minicircles, although varying numbers of maxicircle-encoded gRNAs have been identified in kinetoplastids species. Guide RNAs specify positions and the numbers of inserted or deleted Us by hybridizing to pre-mRNA and forming series of mismatches. These 50-60 nucleotide (nt) molecules are 3 ' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Editing reactions of mRNA cleavage, U-insertion or deletion, and ligation are catalyzed by the RNA editing core complex (RECC). To function in mitochondrial translation, pre-mRNAs must further undergo post-editing 3 ' modification by polyadenylation/uridylation. Recent studies revealed a highly compound nature of mRNA editing and polyadenylation complexes and their interactions with the translational machinery. Here we focus on mechanisms of RNA editing and its functional coupling with pre- and post-editing 3 ' mRNA modification and gRNA maturation pathways. (C) 2014 Elsevier Masson SAS. All rights reserved.