Effect of Alignment on a Liquid Crystal/Split-Ring Resonator Metasurface

被引:12
作者
Atorf, Bernhard [1 ]
Muehlenbernd, Holger [2 ,3 ]
Muldarisnur, Mulda [2 ,3 ]
Zentgraf, Thomas [2 ,3 ]
Kitzerow, Heinz [1 ,3 ]
机构
[1] Univ Paderborn, Fac Sci, Dept Chem, Warburger Str 100, D-33098 Paderborn, Germany
[2] Univ Paderborn, Fac Sci, Dept Phys, D-33098 Paderborn, Germany
[3] Univ Paderborn, CeOPP, D-33098 Paderborn, Germany
关键词
frequency selective surface; liquid crystals; metamaterials; split-ring resonators; tunable near-infrared filters; NEGATIVE PERMEABILITY; METAMATERIAL; RESONANCES; CLOAK;
D O I
10.1002/cphc.201301069
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A metasurface comprising a two-dimensional array of split-ring resonators with resonance frequencies in the near-infrared region is fabricated and embedded in a uniformly aligned liquid crystal. The change of the dielectric permittivity in proximity to the plasmonic structure by the replacement of air with the liquid crystal results in a decrease in resonance frequencies. The resonance shift can be attributed to the interaction of the evanescent field of the excited resonant plasmon modes with the liquid crystal. This shift in resonance frequency is found to depend on the liquid-crystal alignment and to vary for different modes. Also, the resulting effects of changes in temperature or applied external electric field on the metasurface depend on the liquid-crystal alignment and may differ from mode to mode. These observations indicate that the characteristic frequencies of the resonant split-ring resonator modes may depend on different evanescent field components interacting with the liquid crystal. Consequently, certain design rules should be taken into account for the development of tunable metasurfaces based on liquid crystals.
引用
收藏
页码:1470 / 1476
页数:7
相关论文
共 50 条
  • [31] Complementary split-ring resonator for compact waveguide filter design
    Ortiz, N
    Baena, JD
    Beruete, M
    Falcone, F
    Laso, MAG
    Lopetegi, T
    Marqués, R
    Martín, F
    García-García, J
    Sorolla, M
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 46 (01) : 88 - 92
  • [32] A new type of microstrip coupler with complementary split-ring resonator
    Liu, Kai-yu
    Li, Chao
    Li, Fang
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (07) : 1613 - 1616
  • [33] A Fully Additive Approach for the Fabrication of Split-Ring Resonator Metasurfaces
    Imani, Roghayeh
    Chouhan, Shailesh
    Delsing, Jerker
    Acharya, Sarthak
    IEEE 72ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2022), 2022, : 1834 - 1840
  • [34] Design of an Edge-Coupled Dual-Ring Split-Ring Resonator
    Pradeep, Anju
    Mridula, S.
    Mohanan, P.
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2011, 53 (04) : 45 - 54
  • [35] Capacitance tuning of nanoscale split-ring resonators
    Jeppesen, Claus
    Xiao, Sanshui
    Mortensen, Niels Asger
    Kristensen, Anders
    METAMATERIALS V, 2010, 7711
  • [36] Colossal optical activity of split-ring resonator arrays for millimeter waves
    Engelbrecht, S.
    Wunderlich, M.
    Shuvaev, A. M.
    Pimenov, A.
    APPLIED PHYSICS LETTERS, 2010, 97 (08)
  • [37] Tunable terahertz metamaterial using electrostatically electric split-ring resonator
    Xu, Tao
    Xu, Ruijia
    Lin, Yu-Sheng
    RESULTS IN PHYSICS, 2020, 19
  • [38] An investigation of square split-ring resonator as antenna operating at terahertz frequency
    Wahab, Mohd Asmidar bin Abdul
    Awang, Aziati Husna
    Kadir, Ros Shilawani S. Abd
    2007 ASIA-PACIFIC CONFERENCE ON APPLIED ELECTROMAGNETICS, PROCEEDINGS, 2007, : 288 - 293
  • [39] A Compact MIMO Antenna System Using Split-Ring Resonator Antennas
    Kosaka, Keishi
    Toyao, Hiroshi
    Hankui, Eiji
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2017, E100B (02) : 234 - 241
  • [40] Electrically reconfigurable split ring resonator covered by nematic liquid crystal droplet
    Qiu, Kepeng
    Jia, Ning
    Liu, Zijun
    Wu, Chen
    Fan, Yuancheng
    Fu, Quanhong
    Zhang, Fuli
    Zhang, Weihong
    OPTICS EXPRESS, 2016, 24 (24): : 27096 - 27103