An odd-number limitation of extended time-delayed feedback control in autonomous systems

被引:15
作者
Amann, Andreas [1 ,2 ]
Hooton, Edward W. [1 ]
机构
[1] Univ Coll Cork, Sch Math Sci, Cork, Ireland
[2] Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 371卷 / 1999期
基金
爱尔兰科学基金会;
关键词
time delay; chaos control; Floquet theory; PERIODIC-ORBITS; CHAOS;
D O I
10.1098/rsta.2012.0463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a necessary condition for the successful stabilization of a periodic orbit, using the extended version of time-delayed feedback control. This condition depends on the number of real Floquet multipliers larger than unity and is therefore related to the well-known odd-number limitation in non-autonomous systems. We show that the period of the orbit that is induced by mismatching the delay time of the control scheme and the period of the uncontrolled orbit plays an important role in the formulation of the odd-number limitation in the autonomous case.
引用
收藏
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 2007, HDB CHAOS CONTROL
[2]   Comparison of time-delayed feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling -: art. no. 016213 [J].
Beck, O ;
Amann, A ;
Schöll, E ;
Socolar, JES ;
Just, W .
PHYSICAL REVIEW E, 2002, 66 (01)
[3]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[4]   Refuting the odd-number limitation of time-delayed feedback control [J].
Fiedler, B. ;
Flunkert, V. ;
Georgi, M. ;
Hoevel, P. ;
Schoell, E. .
PHYSICAL REVIEW LETTERS, 2007, 98 (11)
[5]   Analytical Limitation for Time-Delayed Feedback Control in Autonomous Systems [J].
Hooton, Edward W. ;
Amann, Andreas .
PHYSICAL REVIEW LETTERS, 2012, 109 (15)
[6]   Delayed feedback control of periodic orbits in autonomous systems [J].
Just, W ;
Reckwerth, D ;
Mockel, J ;
Reibold, E ;
Benner, H .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :562-565
[7]   Mechanism of time-delayed feedback control [J].
Just, W ;
Bernard, T ;
Ostheimer, M ;
Reibold, E ;
Benner, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (02) :203-206
[8]   Limitation of generalized delayed feedback control [J].
Nakajima, H ;
Ueda, Y .
PHYSICA D, 1998, 111 (1-4) :143-150
[9]   On analytical properties of delayed feedback control of chaos [J].
Nakajima, H .
PHYSICS LETTERS A, 1997, 232 (3-4) :207-210
[10]   Phase-reduction-theory-based treatment of extended delayed feedback control algorithm in the presence of a small time delay mismatch [J].
Novicenko, Viktor ;
Pyragas, Kestutis .
PHYSICAL REVIEW E, 2012, 86 (02)