An odd-number limitation of extended time-delayed feedback control in autonomous systems

被引:15
|
作者
Amann, Andreas [1 ,2 ]
Hooton, Edward W. [1 ]
机构
[1] Univ Coll Cork, Sch Math Sci, Cork, Ireland
[2] Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 371卷 / 1999期
基金
爱尔兰科学基金会;
关键词
time delay; chaos control; Floquet theory; PERIODIC-ORBITS; CHAOS;
D O I
10.1098/rsta.2012.0463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a necessary condition for the successful stabilization of a periodic orbit, using the extended version of time-delayed feedback control. This condition depends on the number of real Floquet multipliers larger than unity and is therefore related to the well-known odd-number limitation in non-autonomous systems. We show that the period of the orbit that is induced by mismatching the delay time of the control scheme and the period of the uncontrolled orbit plays an important role in the formulation of the odd-number limitation in the autonomous case.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Refuting the odd-number limitation of time-delayed feedback control
    Fiedler, B.
    Flunkert, V.
    Georgi, M.
    Hoevel, P.
    Schoell, E.
    PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [2] Time-delayed feedback control design beyond the odd-number limitation
    Pyragas, Kestutis
    Novicenko, Viktor
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [3] Analytical Limitation for Time-Delayed Feedback Control in Autonomous Systems
    Hooton, Edward W.
    Amann, Andreas
    PHYSICAL REVIEW LETTERS, 2012, 109 (15)
  • [4] Beyond the odd number limitation of time-delayed feedback control of periodic orbits
    Fiedler, B.
    Flunkert, V.
    Hoevel, P.
    Schoell, E.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 191 (01) : 53 - 70
  • [5] Some sufficient conditions for stabilizing periodic orbits without the odd-number property by delayed feedback control in continuous-time systems
    Nakajima, H
    PHYSICS LETTERS A, 2004, 327 (01) : 44 - 54
  • [6] On time-delayed feedback control of chaotic systems
    Chen, GR
    Yu, XH
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (06): : 767 - 772
  • [7] Time-Delayed Feedback Control in Astrodynamics
    Biggs, James D.
    McInnes, Colin R.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (06) : 1804 - 1811
  • [8] On the initial function space of time-delayed systems: A time-delayed feedback control perspective
    Wang, Huailei
    Chen, Guanrong
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (08): : 3243 - 3249
  • [9] Relation between the extended time-delayed feedback control algorithm and the method of harmonic oscillators
    Pyragas, Viktoras
    Pyragas, Kestutis
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [10] Adaptive tuning of feedback gain in time-delayed feedback control
    Lehnert, J.
    Hoevel, P.
    Flunkert, V.
    Guzenko, P. Yu.
    Fradkov, A. L.
    Schoell, E.
    CHAOS, 2011, 21 (04)