On the Parameter Determination of a Stress relaxation model based on Creep equations using Differential Evolution Algorithm

被引:2
作者
Zhang, Wei-wei [1 ]
Xu, Hong [1 ]
机构
[1] North China Elect Power Univ, Sch Energy Power & Mech Engn, Beijing, Peoples R China
来源
MACHINERY ELECTRONICS AND CONTROL ENGINEERING III | 2014年 / 441卷
关键词
Differential Evolution; Parameter Determination; Creep; Stress Relaxation; GLOBAL OPTIMIZATION;
D O I
10.4028/www.scientific.net/AMM.441.476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A robust and efficient parameter identification method of the stress relaxation model based on Altenbach-Gorash-Naumenko creep equations is discussed. The differential evolution (DE) algorithm with a modified forward-Euler scheme is used in the identification procedure. Besides its good convergence properties and suitability for parallelization, initial guesses close to the solutions are not required for the DE algorithm. The parameter determination problem of the stress relaxation model is based on a very broad range specified for each parameter. The performance of the proposed DE algorithm is compared with a step-by-step model parameter determination technology and the genetic algorithm (GA). The model parameters of 12Cr-1Mo-1W-1/4V stainless steel bolting material at 550 degrees C have been determined, and the creep and stress relaxation behaviors have been calculated. Results indicate that the optimum solutions can be obtained more easily by DE algorithm than others.
引用
收藏
页码:476 / 479
页数:4
相关论文
共 50 条
[41]   An optimized surrogate model using differential evolution algorithm for computing parameters of antennas [J].
Ustun, Deniz ;
Toktas, Feyza ;
Toktas, Abdurrahim .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2022, 35 (02)
[42]   Parameter optimization of software reliability models using improved differential evolution algorithm [J].
Yaghoobi, Tahere .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 177 (177) :46-62
[43]   Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models [J].
Wang, Da ;
Sun, Xingping ;
Kang, Hongwei ;
Shen, Yong ;
Chen, Qingyi .
ENERGY REPORTS, 2022, 8 :4724-4746
[44]   Creep design analysis of silicon nitride using stress relaxation data [J].
Woodford, DA .
MATERIALS & DESIGN, 1996, 17 (03) :127-132
[45]   Dichotomy Guided Based Parameter Adaptation for Differential Evolution [J].
Liu, Xiao-Fang ;
Zhan, Zhi-Hui ;
Zhang, Jun .
GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, :289-296
[46]   A parameter adaptive differential evolution based on depth information [J].
Meng, Zhenyu ;
Yang, Cheng ;
Meng, Fanjia ;
Chen, Yuxin ;
Lin, Fang .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (05) :5661-5671
[47]   Parameter identification of Box-Jenkins systems based on the differential evolution algorithm [J].
Liu, Mengru ;
Li, Junhong ;
Zong, Tiancheng .
PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, :1557-1561
[48]   Parameter Identification of Photovoltaic Models Based on Improved Adaptive Differential Evolution Algorithm [J].
Bian, Ye ;
Si, Chengyong ;
Wang, Lei .
2024 43RD CHINESE CONTROL CONFERENCE, CCC 2024, 2024, :1438-1443
[49]   Optimization on Turbofan Engine Cycle Parameter Based on Improved Differential Evolution Algorithm [J].
Zhang Xiaobo .
2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2017, :556-561
[50]   Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm [J].
Xu B. .
Huagong Xuebao/CIESC Journal, 2021, 72 (03) :1512-1520