Synchronization of coupled Boolean phase oscillators

被引:29
作者
Rosin, David P. [1 ,2 ]
Rontani, Damien [1 ,3 ,4 ]
Gauthier, Daniel J. [1 ]
机构
[1] Duke Univ, Dept Phys, Durham, NC 27708 USA
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Supelec, OPTEL Res Grp, F-57070 Metz, France
[4] Supelec, LMOPS EA 4423, F-57070 Metz, France
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
NETWORKS; CHAOS;
D O I
10.1103/PhysRevE.89.042907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni-and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.
引用
收藏
页数:7
相关论文
共 21 条
  • [1] [Anonymous], 2006, Digital Phase-Lock Loops: Architectures and Applications
  • [2] [Anonymous], SYNCHRONIZATION UNIV
  • [3] Best R.E., 2003, PHASE LOCKED LOOPS
  • [4] Ordered and disordered dynamics in random networks
    Glass, L
    Hill, C
    [J]. EUROPHYSICS LETTERS, 1998, 41 (06): : 599 - 604
  • [5] A general theory of phase noise in electrical oscillators
    Hajimiri, A
    Lee, TH
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (02) : 179 - 194
  • [6] An all-digital phase-locked loop (ADPLL)-based clock recovery circuit
    Hsu, TY
    Shieh, BJ
    Lee, CY
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1999, 34 (08) : 1063 - 1073
  • [7] A dynamic formulation of ring oscillator as solitary-wave propagator
    Kato, H
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (01): : 98 - 101
  • [8] KURAMOTO Y, 1984, CHEM OSCILLATIONS WA, pCH1
  • [9] Chimera states in mechanical oscillator networks
    Martens, Erik Andreas
    Thutupalli, Shashi
    Fourriere, Antoine
    Hallatschek, Oskar
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (26) : 10563 - 10567
  • [10] Chaos in high-dimensional neural and gene networks
    Mestl, T
    Lemay, C
    Glass, L
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1996, 98 (01) : 33 - 52