Synchronization of coupled Boolean phase oscillators

被引:30
作者
Rosin, David P. [1 ,2 ]
Rontani, Damien [1 ,3 ,4 ]
Gauthier, Daniel J. [1 ]
机构
[1] Duke Univ, Dept Phys, Durham, NC 27708 USA
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
[3] Supelec, OPTEL Res Grp, F-57070 Metz, France
[4] Supelec, LMOPS EA 4423, F-57070 Metz, France
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
NETWORKS; CHAOS;
D O I
10.1103/PhysRevE.89.042907
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni-and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2006, Digital Phase-Lock Loops: Architectures and Applications
[2]  
[Anonymous], SYNCHRONIZATION UNIV
[3]  
Best R.E., 2003, PHASE LOCKED LOOPS
[4]   Ordered and disordered dynamics in random networks [J].
Glass, L ;
Hill, C .
EUROPHYSICS LETTERS, 1998, 41 (06) :599-604
[5]   A general theory of phase noise in electrical oscillators [J].
Hajimiri, A ;
Lee, TH .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (02) :179-194
[6]   An all-digital phase-locked loop (ADPLL)-based clock recovery circuit [J].
Hsu, TY ;
Shieh, BJ ;
Lee, CY .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1999, 34 (08) :1063-1073
[7]   A dynamic formulation of ring oscillator as solitary-wave propagator [J].
Kato, H .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (01) :98-101
[8]  
KURAMOTO Y, 1984, CHEM OSCILLATIONS WA, pCH1
[9]   Chimera states in mechanical oscillator networks [J].
Martens, Erik Andreas ;
Thutupalli, Shashi ;
Fourriere, Antoine ;
Hallatschek, Oskar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (26) :10563-10567
[10]   Chaos in high-dimensional neural and gene networks [J].
Mestl, T ;
Lemay, C ;
Glass, L .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 98 (01) :33-52