Semisimple classes of semirings

被引:0
作者
Hebisch, U [1 ]
Weinert, HJ
机构
[1] TU Bergakad Freiberg, Inst Theoret Math, D-09596 Freiberg, Germany
[2] Tech Univ Clausthal, Inst Math, D-38678 Clausthal Zellerfeld, Germany
关键词
semiring; radical theory; semisimple class;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A famous result of Sands states that a class 5 of associative rings is semisimple if and only if S is regular, coinductive, and extensionally closed. Here, we investigate semisimple classes in a Kurosh-Amitsur radical theory for semi-rings. We show that such a class S is regular, K-coinductive, and K-extensionally closed. But a characterization of semisimple classes of semirings needs a fourth condition, namely that S is inverse semi-isomorphically closed. We also obtain other characterizations and results for semisimple classes and for subdirect products of semirings.
引用
收藏
页码:177 / 196
页数:20
相关论文
共 50 条
  • [31] Iséki spaces of semirings
    A. Goswami
    Bollettino dell'Unione Matematica Italiana, 2023, 16 : 677 - 686
  • [32] Semirings which are unions of rings
    Pastijn, F
    Guo, YQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (02): : 172 - 195
  • [33] Internal axioms for domain semirings
    Desharnais, Jules
    Struth, Georg
    SCIENCE OF COMPUTER PROGRAMMING, 2011, 76 (03) : 181 - 203
  • [34] Optimality Theory and Vector Semirings
    Seeker, Wolfgang
    Quernheim, Daniel
    FINITE-STATE METHODS AND NATURAL LANGUAGE PROCESSING, 2009, 191 : 134 - 145
  • [35] Modal Knowledge and Game Semirings
    Moeller, Bernhard
    COMPUTER JOURNAL, 2013, 56 (01) : 53 - 69
  • [36] Congruence-simple semirings
    El Bashir, Robert
    Kepka, Tomas
    SEMIGROUP FORUM, 2007, 75 (03) : 589 - 609
  • [37] Pierce Sheaf for Semirings with Involution
    Markov, R. V.
    RUSSIAN MATHEMATICS, 2014, 58 (04) : 14 - 19
  • [38] On Semirings Satisfying the Baer Criterion
    Il'in, S. N.
    RUSSIAN MATHEMATICS, 2013, 57 (03) : 26 - 31
  • [39] Ideal theory in graded semirings
    Allen, P. J.
    Kim, H. S.
    Neggers, J.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 87 - 91
  • [40] Weak commutativity in idempotent semirings
    Pastijn, F
    SEMIGROUP FORUM, 2006, 72 (02) : 283 - 311