Semisimple classes of semirings

被引:0
|
作者
Hebisch, U [1 ]
Weinert, HJ
机构
[1] TU Bergakad Freiberg, Inst Theoret Math, D-09596 Freiberg, Germany
[2] Tech Univ Clausthal, Inst Math, D-38678 Clausthal Zellerfeld, Germany
关键词
semiring; radical theory; semisimple class;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A famous result of Sands states that a class 5 of associative rings is semisimple if and only if S is regular, coinductive, and extensionally closed. Here, we investigate semisimple classes in a Kurosh-Amitsur radical theory for semi-rings. We show that such a class S is regular, K-coinductive, and K-extensionally closed. But a characterization of semisimple classes of semirings needs a fourth condition, namely that S is inverse semi-isomorphically closed. We also obtain other characterizations and results for semisimple classes and for subdirect products of semirings.
引用
收藏
页码:177 / 196
页数:20
相关论文
共 50 条
  • [21] Morita invariants of semirings
    Sardar, Sujit Kumar
    Gupta, Sugato
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (02)
  • [22] Locally closed semirings
    Ésik, Z
    Kuich, W
    MONATSHEFTE FUR MATHEMATIK, 2002, 137 (01): : 21 - 29
  • [23] Rationally additive semirings
    Ésik, Z
    Kui, NR
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2002, 8 (02): : 173 - 183
  • [24] On the Homological Classification of Semirings
    Il’in S.N.
    Journal of Mathematical Sciences, 2021, 256 (2) : 125 - 142
  • [25] Iseki spaces of semirings
    Goswami, A.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2023, 16 (04): : 677 - 686
  • [26] On Partitioning Ideals of Semirings
    Gupta, Vishnu
    Chaudhari, Jayprakash Ninu
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 181 - 184
  • [27] Semirings generated by idempotents
    Dolzan, David
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [28] ON THE RADICAL OF IDEALS IN SEMIRINGS
    Sanborisoot, Jatuporn
    Lekkoksung, Nareupanat
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 85 - 98
  • [29] POLYNOMIALLY REPRESENTABLE SEMIRINGS
    Chajda, I.
    Eigenthaler, G.
    DEMONSTRATIO MATHEMATICA, 2011, 44 (04) : 693 - 698
  • [30] Iséki spaces of semirings
    A. Goswami
    Bollettino dell'Unione Matematica Italiana, 2023, 16 : 677 - 686