Semisimple classes of semirings

被引:0
|
作者
Hebisch, U [1 ]
Weinert, HJ
机构
[1] TU Bergakad Freiberg, Inst Theoret Math, D-09596 Freiberg, Germany
[2] Tech Univ Clausthal, Inst Math, D-38678 Clausthal Zellerfeld, Germany
关键词
semiring; radical theory; semisimple class;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A famous result of Sands states that a class 5 of associative rings is semisimple if and only if S is regular, coinductive, and extensionally closed. Here, we investigate semisimple classes in a Kurosh-Amitsur radical theory for semi-rings. We show that such a class S is regular, K-coinductive, and K-extensionally closed. But a characterization of semisimple classes of semirings needs a fourth condition, namely that S is inverse semi-isomorphically closed. We also obtain other characterizations and results for semisimple classes and for subdirect products of semirings.
引用
收藏
页码:177 / 196
页数:20
相关论文
共 50 条
  • [1] On base radical and semisimple classes defined by class operators
    McConnell, N. R.
    McDougall, R. G.
    Stokes, T.
    ACTA MATHEMATICA HUNGARICA, 2013, 138 (04) : 307 - 328
  • [2] On base radical and semisimple classes defined by class operators
    N. R. McConnell
    R. G. McDougall
    T. Stokes
    Acta Mathematica Hungarica, 2013, 138 : 307 - 328
  • [3] Erratum to: On base radical and semisimple classes defined by class operators
    N. R. Mcconnell
    R. G. Mcdougall
    T. Stokes
    Acta Mathematica Hungarica, 2014, 144 : 266 - 268
  • [4] *-μ-semirings and *-λ-semirings
    Feng, F
    Zhao, XZ
    Jun, YB
    THEORETICAL COMPUTER SCIENCE, 2005, 347 (1-2) : 423 - 431
  • [5] Locally closed semirings and iteration semirings
    Zhao, XZ
    MONATSHEFTE FUR MATHEMATIK, 2005, 144 (02): : 157 - 167
  • [6] Fuzzy Structure Space of Semirings and Γ-Semirings
    Goswami, Sarbani Mukherjee
    Mukhopadhyay, Arup
    Sardar, Sujit Kumar
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (03) : 333 - 344
  • [7] On *-λ-semirings
    Feng, Feng
    Jun, Young Bae
    Zhao, Xian Zhong
    INFORMATION SCIENCES, 2007, 177 (22) : 5012 - 5023
  • [8] ON BASE RADICAL AND SEMISIMPLE CLASSES DEFINED BY CLASS OPERATORS (vol 138, pg 307, 2013)
    McConnell, N. R.
    McDougall, R. G.
    Stokes, T.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 266 - 268
  • [9] BASIC SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    MATHEMATICA SLOVACA, 2019, 69 (03) : 533 - 540
  • [10] Integration in semirings
    Chajda, Ivan
    Laenger, Helmut
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (12)