Fast identification algorithms for Gaussian process model

被引:2
作者
Hong, Xia [1 ]
Gao, Junbin [2 ]
Jiang, Xinwei [3 ]
Harris, Chris J. [4 ]
机构
[1] Univ Reading, Sch Syst Engn, Reading RG6 6AY, Berks, England
[2] Charles Sturt Univ, Sch Comp & Math, Bathurst, NSW 2795, Australia
[3] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[4] Univ Southampton, Southampton, Hants, England
关键词
Gaussian process; Optimization; Kullback-Leibler divergence; REGRESSION;
D O I
10.1016/j.neucom.2013.11.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A class of fast identification algorithms is introduced for Gaussian process (GP) models. The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank, a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions. The objective of either maximizing the marginal likelihood or the Kullbacic-Leibler (K-L) divergence between the estimated output probability density function (pdf) and the true pdf has been used as respective cost functions. For each cost function, an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 2002, Model selection and multimodel inference: a practical informationtheoretic approach
[2]   A PREDICTION-ERROR AND STEPWISE-REGRESSION ESTIMATION ALGORITHM FOR NONLINEAR-SYSTEMS [J].
BILLINGS, SA ;
VOON, WSF .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (03) :803-822
[3]   Sparse mzodeling using orthogonal forward regression with PRESS statistic and regularization [J].
Chen, S ;
Hong, X ;
Harris, CJ ;
Sharkey, PM .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (02) :898-911
[4]   Construction of Tunable Radial Basis Function Networks Using Orthogonal Forward Selection [J].
Chen, Sheng ;
Hong, Xia ;
Luk, Bing L. ;
Harris, Chris J. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (02) :457-466
[5]   Robust Filtering and Smoothing with Gaussian Processes [J].
Deisenroth, Marc Peter ;
Turner, Ryan Darby ;
Huber, Marco F. ;
Hanebeck, Uwe D. ;
Rasmussen, Carl Edward .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (07) :1865-1871
[6]  
Hong X., J SYSTEMS SCI UNPUB
[7]   Supervised Latent Linear Gaussian Process Latent Variable Model for Dimensionality Reduction [J].
Jiang, Xinwei ;
Gao, Junbin ;
Wang, Tianjiang ;
Zheng, Lihong .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (06) :1620-1632
[8]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[9]  
Lawrence N, 2005, J MACH LEARN RES, V6, P1783
[10]  
Quiñonero-Candela JQ, 2005, J MACH LEARN RES, V6, P1939