Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network

被引:56
作者
Pan, Bin [1 ,2 ]
Shi, Zhenwei [1 ,2 ]
Zhang, Ning [3 ]
Xie, Shaobiao [4 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
[3] Shanghai Aerosp Elect Technol Inst, Shanghai 201109, Peoples R China
[4] Shanghai Acad Spaceflight Technol, Shanghai 201109, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Deep learning; hyperspectral image classification; nonlinear spectral- spatial network (NSSNet);
D O I
10.1109/LGRS.2016.2608963
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, for the task of hyperspectral image classification, deep-learning-based methods have revealed promising performance. However, the complex network structure and the time-consuming training process have restricted their applications. In this letter, we construct a much simpler network, i.e., the nonlinear spectral-spatial network (NSSNet), for hyperspectral image classification. NSSNet is developed from the basic structure of a principal component analysis network. Nonlinear information is included in NSSNet, to generate a more discriminative feature expression. Moreover, spectral and spatial features are combined to further improve the classification accuracy. Experimental results indicate that our method achieves better performance than state-of-the-art deep-learning-based methods.
引用
收藏
页码:1782 / 1786
页数:5
相关论文
共 16 条
[1]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[2]   PCANet: A Simple Deep Learning Baseline for Image Classification? [J].
Chan, Tsung-Han ;
Jia, Kui ;
Gao, Shenghua ;
Lu, Jiwen ;
Zeng, Zinan ;
Ma, Yi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5017-5032
[3]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[4]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[5]   Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data [J].
Chi, Mingmin ;
Kun, Qian ;
Benediktsson, Jon Atli ;
Feng, Rui .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) :762-766
[6]   Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery [J].
Gu, Yanfeng ;
Wang, Chen ;
You, Di ;
Zhang, Yuhang ;
Wang, Shizhe ;
Zhang, Ye .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07) :2852-2865
[7]   Support vector machines for hyperspectral remote sensing classification [J].
Gualtieri, JA ;
Cromp, RF .
ADVANCES IN COMPUTER-ASSISTED RECOGNITION, 1999, 3584 :221-232
[8]   Deep Convolutional Neural Networks for Hyperspectral Image Classification [J].
Hu, Wei ;
Huang, Yangyu ;
Wei, Li ;
Zhang, Fan ;
Li, Hengchao .
JOURNAL OF SENSORS, 2015, 2015
[9]   Spectral-Spatial Hyperspectral Image Classification With Edge-Preserving Filtering [J].
Kang, Xudong ;
Li, Shutao ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (05) :2666-2677
[10]   Multiple Feature Learning for Hyperspectral Image Classification [J].
Li, Jun ;
Huang, Xin ;
Gamba, Paolo ;
Bioucas-Dias, Jose M. ;
Zhang, Liangpei ;
Benediktsson, Jon Atli ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03) :1592-1606