Minimizing the Cayley transform of an orthogonal matrix by multiplying by signature matrices

被引:2
作者
O'Dorney, Evan [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Cayley transform; Signature matrix; Principal minor;
D O I
10.1016/j.laa.2014.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cayley transform, $(A) = (I - A) (I + A)(-1), maps skew-symmetric matrices to orthogonal matrices and vice versa. Given an orthogonal matrix Q, we can choose a diagonal matrix D with each diagonal entry +/- 1 (a signature matrix) and, if I + QD is nonsingular, calculate the skew-symmetric matrix $(QD). An open problem is to show that, by a suitable choice of D, we can make every entry of $(QD) less than or equal to 1 in absolute value. We solve this problem by showing that the principal minors of $(QD) are related in a simple way to the principal minors of $(Q). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
empty
未找到相关数据