Langevin diffusions and the Metropolis-adjusted Langevin algorithm

被引:70
作者
Xifara, T. [1 ,2 ]
Sherlock, C. [2 ]
Livingstone, S. [3 ]
Byrne, S. [3 ]
Girolami, M. [3 ]
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[2] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YW, England
[3] UCL, Dept Stat Sci, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Diffusions; Markov chain Monte Carlo; Metropolis-adjusted Langevin algorithm; Riemannian manifolds;
D O I
10.1016/j.spl.2014.04.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a Langevin diffusion with a target stationary density with respect to Lebesgue measure, as opposed to the volume measure of a previously-proposed diffusion. The two are sometimes equivalent but in general distinct and lead to different Metropolis-adjusted Langevin algorithms, which we compare. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1998, Stochastic differential equations
[2]  
[Anonymous], 1995, Markov Chain Monte Carlo in Practice
[3]  
Durrett R., 1996, STOCHASTIC CALCULAS
[4]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[5]   Riemann manifold Langevin and Hamiltonian Monte Carlo methods [J].
Girolami, Mark ;
Calderhead, Ben .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :123-214
[6]   TIME-REVERSIBLE DIFFUSIONS [J].
KENT, J .
ADVANCES IN APPLIED PROBABILITY, 1978, 10 (04) :819-835
[7]  
Kloeden P.-E., 1992, STOCHASTIC MODELLING, V23
[8]   Parameter estimation for differential equations: a generalized smoothing approach [J].
Ramsay, J. O. ;
Hooker, G. ;
Campbell, D. ;
Cao, J. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :741-770
[9]  
Roberts G., 2002, Methodology and Computing in Applied Probability, V4, P337, DOI [10.1023/A:1023562417138, DOI 10.1023/A:1023562417138]
[10]  
Roberts G. O., 1996, Bernoulli, P341, DOI DOI 10.2307/3318418