The gamma generalized linear model, log transformation, and the robust Yuen-Welch test for analyzing group means with skewed and heteroscedastic data

被引:14
作者
Ng, Victoria K. Y. [1 ]
Cribbie, Robert A. [1 ]
机构
[1] York Univ, Dept Psychol, Toronto, ON, Canada
关键词
Arithmetic mean; ANOVA; Box-Cox; Gamma; Generalized linear model; Geometric mean; Robust statistics; Transformations; Trimmed mean; NORMALITY; INFERENCE; VARIANCE; EQUALITY; POWER;
D O I
10.1080/03610918.2018.1440301
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Alternatives for positively skewed and heteroscedastic data include the Yuen-Welch (YW) test, data transformations, and the generalized linear model (GzLM). Because the GzLM is rarely considered in psychology compared to the other two, we compared these strategies conceptually and empirically. The YW test generally has satisfactory power, but its trimmed mean can deviate substantially from the arithmetic mean, which is often the desired parameter. The gamma GzLM can be used as a substitute for the log transformation and addresses the limitations in inference for the YW and data transformations.
引用
收藏
页码:2269 / 2286
页数:18
相关论文
共 33 条
[1]  
[Anonymous], 2018, J BASIC APPL SCI, DOI DOI 10.1016/J.BJBAS.2017.10.001
[2]  
[Anonymous], 2022, INTRO ROBUST ESTIMAT
[3]  
Auguie B., 2017, gridExtra: Miscellaneous Functions for"Grid" GraphicsR package version 2.3
[4]   Modeling risk using generalized linear models [J].
Blough, DK ;
Madden, CW ;
Hornbrook, MC .
JOURNAL OF HEALTH ECONOMICS, 1999, 18 (02) :153-171
[5]   Statistical inference for a linear function of medians: Confidence intervals, hypothesis testing, and sample size requirements [J].
Bonett, DG ;
Price, RM .
PSYCHOLOGICAL METHODS, 2002, 7 (03) :370-383
[6]   AN ANALYSIS OF TRANSFORMATIONS [J].
BOX, GEP ;
COX, DR .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1964, 26 (02) :211-252
[7]   ROBUSTNESS [J].
BRADLEY, JV .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1978, 31 (NOV) :144-152
[8]   ROBUST TESTS FOR EQUALITY OF VARIANCES [J].
BROWN, MB ;
FORSYTHE, AB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (346) :364-367