Non-coding RNAs in cardiac regeneration

被引:48
作者
Tao, Lichan [1 ]
Bei, Yihua [2 ,3 ]
Zhou, Yanli [1 ]
Xiao, Junjie [2 ,3 ]
Li, Xinli [1 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 1, Dept Cardiol, Nanjing, Jiangsu, Peoples R China
[2] Shanghai Univ, Regenerat & Ageing Lab, Expt Ctr Life Sci, Sch Life Sci, Shanghai, Peoples R China
[3] Shanghai Univ, Shanghai Key Lab Bioenergy Crops, Sch Life Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
non-coding RNA; cardiac regeneration; microRNA; long non-coding RNA; EMBRYONIC STEM-CELLS; ZEBRAFISH HEART REGENERATION; CARDIOMYOCYTE PROLIFERATION; GENE-EXPRESSION; MYOCARDIAL-INFARCTION; HUMAN FIBROBLASTS; DOWN-REGULATION; MOUSE MODEL; MICRORNA; DIFFERENTIATION;
D O I
10.18632/oncotarget.6073
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93, miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases.
引用
收藏
页码:42613 / 42622
页数:10
相关论文
共 93 条
[1]   Induced regeneration-the progress and promise of direct reprogramming for heart repair [J].
Addis, Russell C. ;
Epstein, Jonathan A. .
NATURE MEDICINE, 2013, 19 (07) :829-836
[2]   Long Noncoding RNAs: Cellular Address Codes in Development and Disease [J].
Batista, Pedro J. ;
Chang, Howard Y. .
CELL, 2013, 152 (06) :1298-1307
[3]   Dynamics of Cell Generation and Turnover in the Human Heart [J].
Bergmann, Olaf ;
Zdunek, Sofia ;
Felker, Anastasia ;
Salehpour, Mehran ;
Alkass, Kanar ;
Bernard, Samuel ;
Sjostrom, Staffan L. ;
Szewczykowska, Mirosawa ;
Jackowska, Teresa ;
dos Remedios, Cris ;
Malm, Torsten ;
Andrae, Michaela ;
Jashari, Ramadan ;
Nyengaard, Jens R. ;
Possnert, Goran ;
Jovinge, Stefan ;
Druid, Henrik ;
Frisen, Jonas .
CELL, 2015, 161 (07) :1566-1575
[4]   Evidence for Cardiomyocyte Renewal in Humans [J].
Bergmann, Olaf ;
Bhardwaj, Ratan D. ;
Bernard, Samuel ;
Zdunek, Sofia ;
Barnabe-Heider, Fanie ;
Walsh, Stuart ;
Zupicich, Joel ;
Alkass, Kanar ;
Buchholz, Bruce A. ;
Druid, Henrik ;
Jovinge, Stefan ;
Frisen, Jonas .
SCIENCE, 2009, 324 (5923) :98-102
[5]   Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury [J].
Bersell, Kevin ;
Arab, Shima ;
Haring, Bernhard ;
Kuehn, Bernhard .
CELL, 2009, 138 (02) :257-270
[6]   Direct Reprogramming of Fibroblasts to Myocytes via Bacterial Injection of MyoD Protein [J].
Bichsel, Candace ;
Neeld, Dennis ;
Hamazaki, Takashi ;
Chang, Lung-Ji ;
Yang, Li-Jun ;
Terada, Naohiro ;
Jin, Shouguang .
CELLULAR REPROGRAMMING, 2013, 15 (02) :117-125
[7]   MicroRNA-34a regulates cardiac ageing and function [J].
Boon, Reinier A. ;
Iekushi, Kazuma ;
Lechner, Stefanie ;
Seeger, Timon ;
Fischer, Ariane ;
Heydt, Susanne ;
Kaluza, David ;
Treguer, Karine ;
Carmona, Guillaume ;
Bonauer, Angelika ;
Horrevoets, Anton J. G. ;
Didier, Nathalie ;
Girmatsion, Zenawit ;
Biliczki, Peter ;
Ehrlich, Joachim R. ;
Katus, Hugo A. ;
Mueller, Oliver J. ;
Potente, Michael ;
Zeiher, Andreas M. ;
Hermeking, Heiko ;
Dimmeler, Stefanie .
NATURE, 2013, 495 (7439) :107-110
[8]   C/EBPβ Controls Exercise-Induced Cardiac Growth and Protects against Pathological Cardiac Remodeling [J].
Bostroem, Pontus ;
Mann, Nina ;
Wu, Jun ;
Quintero, Pablo A. ;
Plovie, Eva R. ;
Panakova, Daniela ;
Gupta, Rana K. ;
Xiao, Chunyang ;
MacRae, Calum A. ;
Rosenzweig, Anthony ;
Spiegelman, Bruce M. .
CELL, 2010, 143 (07) :1072-1083
[9]   Direct Reprogramming of Fibroblasts into Embryonic Sertoli-like Cells by Defined Factors [J].
Buganim, Yosef ;
Itskovich, Elena ;
Hu, Yueh-Chiang ;
Cheng, Albert W. ;
Ganz, Kibibi ;
Sarkar, Sovan ;
Fu, Dongdong ;
Welstead, G. Grant ;
Page, David C. ;
Jaenisch, Rudolf .
CELL STEM CELL, 2012, 11 (03) :373-386
[10]   Exercise Protects Against Myocardial Ischemia-Reperfusion Injury via Stimulation of β3-Adrenergic Receptors and Increased Nitric Oxide Signaling: Role of Nitrite and Nitrosothiols [J].
Calvert, John W. ;
Condit, Marah E. ;
Aragon, Juan Pablo ;
Nicholson, Chad K. ;
Moody, Bridgette F. ;
Hood, Rebecca L. ;
Sindler, Amy L. ;
Gundewar, Susheel ;
Seals, Douglas R. ;
Barouch, Lili A. ;
Lefer, David J. .
CIRCULATION RESEARCH, 2011, 108 (12) :1448-U125