On a discrete model for quantum transport in semi-conductor devices

被引:4
作者
Goudon, T [1 ]
Lohrengel, S [1 ]
机构
[1] Univ Nice, Lab JA Dieudonne, UMR 6621, F-06108 Nice 02, France
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2002年 / 31卷 / 4-6期
关键词
Wigner equation; discrete velocity models; semi-classical limit; operator splitting methods;
D O I
10.1081/TT-120015510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a semi-discretized version of the Wigner equation. The model fulfills the following fundamental requirements: it is well-posed in a natural functional framework; as the mesh size of the discretization goes to 0, the solutions converge (with spectral accuracy) to the solution of the continuous equation; it is consistent with the semi-classical limit. We also discuss an operator splitting implementation of this model.
引用
收藏
页码:471 / 490
页数:20
相关论文
共 22 条
[1]   A discrete-velocity, stationary Wigner equation [J].
Arnold, A ;
Lange, H ;
Zweifel, PF .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7167-7180
[2]   OPERATOR SPLITTING METHODS APPLIED TO SPECTRAL DISCRETIZATIONS OF QUANTUM TRANSPORT-EQUATIONS [J].
ARNOLD, A ;
RINGHOFER, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1876-1894
[3]   An operator splitting method for the Wigner-Poisson problem [J].
Arnold, A ;
Ringhofer, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1622-1643
[4]  
ARNOLD A, 1995, MATH PROBLEMS SEMICO, V340, P105
[5]  
DEGOND P, 1990, RAIRO-MATH MODEL NUM, V24, P697
[6]  
FRENSLEY W, 1986, LARGE SCALE COMPUTAT, P73
[7]   WIGNER-FUNCTION MODEL OF A RESONANT-TUNNELING SEMICONDUCTOR-DEVICE [J].
FRENSLEY, WR .
PHYSICAL REVIEW B, 1987, 36 (03) :1570-1580
[8]  
Gerard P, 1997, COMMUN PUR APPL MATH, V50, P323, DOI 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO
[9]  
2-C
[10]  
Gérard P, 2000, COMMUN PUR APPL MATH, V53, P280, DOI 10.1002/(SICI)1097-0312(200002)53:2<280::AID-CPA4>3.0.CO